Cách 1:
Gọi các số phức
z 1 = a 1 + b 1 i , z 2 = a 2 + b 2 i ( a 1 , b 1 , a 2 , b 2 ∈ ℝ )
z 1 - z 2 = a 1 - a 2 + b 1 - b 2 i z 1 + z 2 = a 1 + a 2 + b 1 + b 2 i
Ta có: z 1 = a 1 2 + b 1 2 = 3
⇒ a 1 2 + b 1 2 = 3
z 2 = a 2 2 + b 2 2 = 3 ⇒ a 2 2 + b 2 2 = 3
z 1 - z 2 = 2
⇔ a 1 - a 2 2 + b 1 - b 2 2 = 2 ⇔ a 1 - a 2 2 + b 1 - b 2 2 = 4 ⇔ a 1 2 + b 1 2 + a 2 2 + b 2 2 - 2 a 1 a 2 - 2 b 1 b 2 = 4 ⇔ 2 a 1 a 2 + 2 b 1 b 2 = 2
Do đó:
z 1 + z 2 = a 1 + a 2 2 + b 1 + b 2 2 = a 1 2 + b 1 2 + a 2 2 + b 2 2 + 2 a 1 a 2 + 2 b 1 b 2 = 8 = 2 2
Cách 2:
z 1 - z 2 2 = z 1 - z 2 z 1 ¯ - z 2 ¯ = z 1 2 + z 2 2 - z 1 z 2 ¯ + z 2 z 1 ¯ = 4 z 1 + z 2 2 = z 1 + z 2 z 1 ¯ + z 2 ¯ = z 1 2 + z 2 2 + z 1 z 2 ¯ + z 2 z 1 ¯ = 8 ⇒ z 1 + z 2 = 2 2
Cách 3:
Gọi A, B lần lượt là điểm biểu diễn 2 số phức z 1 , z 2 . Khi đó tam giác OAB có O A = O B = 3 , A B = 2 . Gọi I là trung điểm của AB.
O I = O A 2 - A I 2 = 2 z 1 + z 2 = 2 O I ⇀ = 2 2
Chọn đáp án D.