giúp mình với cho a1,a2,a3,...,an\(\in\)Z CMR a1^5+a2^5+...+an^5 chia hết cho 30 <=> a1+a2+...+an chia hết cho 30>>help me
1. Cho 25 số tự nhiên a1;a2;a3;a4;...a25 thỏa mãn điều kiện:
1/căn a1 +1/căn a2+....+1/căn a25 = 9
chứng minh trong 25 số tồn tại 2 số bằng nhau
Cho 2n số nguyên dương a1, a2, a3,......, a2n-1, a2n thỏa mãn:
a12 + a32 + a52 + ..... + a2n-12 = a22 + a42 + a562 + ..... + a2n2
Chứng minh rằng a1 + a2 + a3 + ...... + a2n-1 + a2n là hợp số (n \(\in\) N*)
Cho số nguyên dương a1,a2,a3,...,a2015 tm điều kiện"
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+\frac{1}{\sqrt{a_3}}+...+\frac{1}{\sqrt{a_{2015}}}\ge89\)
CMR trong 2015 số nguyên dương đó , luôn tồn tại ít nhất 2 số bằng nhau.
cho các số thực ko âm a1,a2,a3.a4,a5 thỏa mãn a1+a2+a3+a4+a5=1
tìm Max A=a1*a2+a2*a3+a3*a4+a4*a5
1.Cho n >= 2. Chứng minh rằng tồn tại các số a1<a2<a3<...<an; a nguyên dương sao cho
1/a1^2 + 1/a2^2 +...+ 1/an^2 = 1/a^2
2.Cho 7 số tự nhiên phân biệt có tổng là 100. Chứng minh tồn tại 3 số có tổng lớn hơn hoặc bằng 50
cho các số thực ko âm a1,a2,a3.a4,a5 thỏa mãn
a1+a2+a3+a4+a5=1
tìm Max A=a1*a2+a2*a3+a3*a4+a4*a5
cho các số tự nhiên a1,a2,..an chứng minh rằng nếu a1+a2+..\(a_n\)chia hết cho 30 thì \(a^5_1\)+\(a^5_2\)+........+\(a^5_n\)chi hết cho 30
Cho các số nguyên a1, a2, a3....,an.
Đặt S = a13+a23+...+an3
P = (a1+a2+...+an)3
CMR: S chia hết cho 6 <=> P chia hết cho 6