Lời giải:
Áp dụng BĐT AM-GM:
\(x^2+y^3\geq x^3+y^4\)
\(\Rightarrow x^2+y^2+y^3\geq x^3+y^4+y^2\geq x^3+2\sqrt{y^6}=x^3+2y^3\)
\(\Rightarrow x^2+y^2\geq x^3+y^3(1)\)
Áp dụng BĐT Bunhiacopxky:
\((x+y^2)(x^2+y^3)\geq (x+y^2)(x^3+y^4)\geq (x^2+y^3)^2\)
\(\Rightarrow x+y^2\geq x^2+y^3\)
\(\Rightarrow x+y+y^2\geq x^2+y^3+y\geq x^2+2\sqrt{y^4}=x^2+2y^2\) (AM-GM)
\(\Rightarrow x+y\geq x^2+y^2\) (2)
Lại áp dụng BĐT AM-GM:
\(x^2+y^2\geq \frac{(x+y)^2}{2}\) . Suy ra \(x+y\geq x^2+y^2\geq \frac{(x+y)^2}{2}\)
\(\Rightarrow 1\geq \frac{x+y}{2}\Rightarrow x+y\leq 2(3)\)
Từ $(1),(2),(3)$ suy ra \(x^3+y^3\leq x^2+y^2\leq x+y\leq 2\)
Dấu bằng xảy ra khi $x=y=1$