Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tường Nguyễn Thế

Cho các số dương x, y thỏa mãn điều kiện \(x^2+y^3\ge x^3+y^4\). Chứng minh: \(x^3+y^3\le x^2+y^2\le x+y\le2\)

Akai Haruma
15 tháng 7 2018 lúc 16:27

Lời giải:

Áp dụng BĐT AM-GM:

\(x^2+y^3\geq x^3+y^4\)

\(\Rightarrow x^2+y^2+y^3\geq x^3+y^4+y^2\geq x^3+2\sqrt{y^6}=x^3+2y^3\)

\(\Rightarrow x^2+y^2\geq x^3+y^3(1)\)

Áp dụng BĐT Bunhiacopxky:

\((x+y^2)(x^2+y^3)\geq (x+y^2)(x^3+y^4)\geq (x^2+y^3)^2\)

\(\Rightarrow x+y^2\geq x^2+y^3\)

\(\Rightarrow x+y+y^2\geq x^2+y^3+y\geq x^2+2\sqrt{y^4}=x^2+2y^2\) (AM-GM)

\(\Rightarrow x+y\geq x^2+y^2\) (2)

Lại áp dụng BĐT AM-GM:

\(x^2+y^2\geq \frac{(x+y)^2}{2}\) . Suy ra \(x+y\geq x^2+y^2\geq \frac{(x+y)^2}{2}\)

\(\Rightarrow 1\geq \frac{x+y}{2}\Rightarrow x+y\leq 2(3)\)

Từ $(1),(2),(3)$ suy ra \(x^3+y^3\leq x^2+y^2\leq x+y\leq 2\)

Dấu bằng xảy ra khi $x=y=1$


Các câu hỏi tương tự
DƯƠNG PHAN KHÁNH DƯƠNG
Xem chi tiết
ngọc linh
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Viêt Thanh Nguyễn Hoàn...
Xem chi tiết
Adu Darkwa
Xem chi tiết
Lê Gia Bảo
Xem chi tiết
Yến Nhi
Xem chi tiết
Mai Huyền My
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết