sao mình không tìm được ra dấu '' = '' của bài này
à bài này mk làm được rồi mk đăng lên chơi thôi
sao mình không tìm được ra dấu '' = '' của bài này
à bài này mk làm được rồi mk đăng lên chơi thôi
Cho a,b,c là các số dương thỏa mãn a+b+c=4.chứng minh \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}\ge2\sqrt{2}\)
NĂM MỚI CHÚC TOÀN THỂ OLM MẠNH KHỎE NHA
cho a,b,c là các số dương thỏa mãn a+b+c= 4.Chứng minh rằng \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}\ge2\sqrt{2}\)
Cho a,b,c là các số thực dương thỏa a+b+c=4.CMR:
\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}\ge2\sqrt{2}\)
Cho a,b,c là các số dương thỏa mãn a+b+c=4.Chứng minh rằng:
\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
Bạn nào biết giúp mình với
Cho 3 số dương a,b,c thỏa mãn a=b+c. Chứng minh \(\sqrt[4]{a^3}< \sqrt[4]{b^3}+\sqrt[4]{c^3}\)
Giải hộ mình với mai mình đi thi rồi
Cho \(a>0,b>0,c>0\) Thỏa mãn \(a+b=c\)
Chứng minh rằng \(\sqrt[4]{a^3}+\sqrt[4]{b^3}>\sqrt[4]{c^3}\)
\(\text{cho a, b , c là các số dương thỏa mãn a+b +c =4 }\)
\(\text{chứng minh }\)\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)\(\)
cho a,b,c dương thỏa mãn a+b=c. Chứng minh rằng \(\sqrt[4]{a^3}+\sqrt[4]{b^3}>\sqrt[4]{c^3}\)
Cho a,b,c là các số thực dương. Chứng minh rằng :
\(\dfrac{a}{\sqrt{b^2+\dfrac{bc}{4}+c^2}}+\dfrac{b}{\sqrt{c^2+\dfrac{ca}{4}+a^2}}+\dfrac{c}{\sqrt{a^2+\dfrac{ba}{4}+b^2}}\ge2\)