Toru

Cho biểu thức:

\(A=\dfrac{x^2+1}{x}+\dfrac{x^3-1}{x^2-x}+\dfrac{x^4-x^3+x-1}{x-x^3}\left(x>0;x\ne1\right)\)

a) Rút gọn A

b) Tìm A biết x thoả mãn: \(x^2+x=12\)

c) Chứng minh rằng: \(A>4\). Từ đó tìm x để \(B=\dfrac{6}{A}\) nhận giá trị nguyên

Nguyễn Lê Phước Thịnh
19 tháng 11 lúc 18:08

a: \(A=\dfrac{x^2+1}{x}+\dfrac{x^3-1}{x^2-x}+\dfrac{x^4-x^3+x-1}{x-x^3}\)

\(=\dfrac{x^2+1}{x}+\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}-\dfrac{x^3\left(x-1\right)+\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+1}{x}+\dfrac{x^2+x+1}{x}-\dfrac{\left(x-1\right)\left(x^3+1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+1+x^2+x+1}{x}-\dfrac{x^2-x+1}{x}\)

\(=\dfrac{2x^2+x+2-x^2+x-1}{x}=\dfrac{x^2+2x+1}{x}=\dfrac{\left(x+1\right)^2}{x}\)

b: \(x^2+x=12\)

=>\(x^2+x-12=0\)

=>(x+4)(x-3)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-4\left(loại\right)\end{matrix}\right.\)

Thay x=3 vào A, ta được:

\(A=\dfrac{\left(3+1\right)^2}{3}=\dfrac{16}{3}\)

Khi x=-4 thì \(A=\dfrac{\left(-4+1\right)^2}{-4}=\dfrac{9}{-4}=-\dfrac{9}{4}\)

c: \(A-4=\dfrac{\left(x+1\right)^2}{x}-4\)

\(=\dfrac{\left(x+1\right)^2-4x}{x}\)

\(=\dfrac{x^2+2x+1-4x}{x}=\dfrac{x^2-2x+1}{x}=\dfrac{\left(x-1\right)^2}{x}\)>0 với mọi x>0

=>A>4

Bình luận (1)

Các câu hỏi tương tự
Toru
Xem chi tiết
Tuyết Ly
Xem chi tiết
Tuyết Ly
Xem chi tiết
Tuyết Ly
Xem chi tiết
Zeno007
Xem chi tiết
Tuyết Ly
Xem chi tiết
🙂T😃r😄a😆n😂g🤣
Xem chi tiết
Tuyết Ly
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết

Khoá học trên OLM (olm.vn)


Khoá học trên OLM (olm.vn)