a) \(A=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\left(ĐK:a>0;a\ne1;a\ne4\right)\)
\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
b) Để \(A>\frac{1}{6}\)
\(\Leftrightarrow\)\(\frac{\sqrt{a}-2}{3\sqrt{a}}>\frac{1}{6}\)
\(\Leftrightarrow\)\(\frac{\sqrt{a}-2}{3\sqrt{a}}-\frac{1}{6}>0\)
\(\Leftrightarrow\)\(\frac{2\sqrt{a}-4-\sqrt{a}}{6\sqrt{a}}>0\)
\(\Leftrightarrow\)\(\frac{\sqrt{a}-4}{6\sqrt{a}}>0\)
\(\Leftrightarrow\sqrt{a}-4>0\Leftrightarrow a>16\left(tm\right)\)
Vậy a>16 thì \(A>\frac{1}{6}\)
ĐKXĐ : \(a>0,a\ne4,a\ne1\)
a) \(A=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\left(\frac{a-1-\left(a-4\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
b) \(A>\frac{1}{6}\Rightarrow\frac{\sqrt{a}-2}{3\sqrt{a}}>\frac{1}{6}\Rightarrow-\frac{2}{3\sqrt{a}}+\frac{1}{3}>\frac{1}{6}\Rightarrow\frac{2}{3\sqrt{a}}>\frac{1}{6}\Rightarrow\frac{1}{\sqrt{a}}>\frac{1}{4}\Rightarrow a< 16\)
Kết hợp với điều kiện xác định.