Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ko tên

Cho biểu thức M =\(\frac{\sqrt{9x^2-6x+1}}{9x^2-1}\).

a) Tìm điều kiện xác định của M;

b) Rút gọn biểu thức M;

c) Tìm giá trị của x để M =\(\frac{1}{4}\) ;

d) Tìm giá trị của x để M < 0

Victorique de Blois
22 tháng 8 2021 lúc 15:49

\(a,ĐK:9x^2-1\ne0\Leftrightarrow x^2\ne\frac{1}{9}\Leftrightarrow x\ne\pm\frac{1}{3}\)

\(b,M=\frac{\sqrt{9x^2-6x+1}}{9x^2-1}=\frac{\sqrt{\left(3x-1\right)^2}}{\left(3x-1\right)\left(3x+1\right)}=\frac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}\)

với \(3x-1>0\) ta có \(M=\frac{3x-1}{\left(3x-1\right)\left(3x+1\right)}=\frac{1}{3x+1}\)

với \(3x-1< 0\) ta có \(M=\frac{-\left(3x-1\right)}{\left(3x-1\right)\left(3x+1\right)}=-\frac{1}{3x+1}\)

\(c,\) th1 : \(M=\frac{1}{3x+1}\)  khi \(x>\frac{1}{3}\) mà \(M=\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{3x+1}=\frac{1}{4}\Leftrightarrow x=1\left(thoaman\right)\) 

th2 : \(M=-\frac{1}{3x+1}\) khi \(x< \frac{1}{3}\) mà \(M=\frac{1}{4}\)

\(\Leftrightarrow\frac{-1}{3x+1}=\frac{1}{4}\Leftrightarrow3x+1=-4\Leftrightarrow x=-\frac{5}{3}\left(thoaman\right)\)

\(d,M=\frac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}< 0\) có \(\left|3x-1\right|>0\)

\(\Rightarrow\left(3x-1\right)\left(3x+1\right)< 0\)

th1 : \(\hept{\begin{cases}3x-1>0\\3x+1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{3}\\x< -\frac{1}{3}\end{cases}\left(voli\right)}}\)

th2 : \(\hept{\begin{cases}3x-1< 0\\3x+1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{3}\\x>-\frac{1}{3}\end{cases}\Leftrightarrow-\frac{1}{3}< x< \frac{1}{3}}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phan Văn Khởi
Xem chi tiết
Nguyễn Lâm Ngọc
Xem chi tiết
Nguyễn Đan Xuân Nghi
Xem chi tiết
Diệp An Nhiên
Xem chi tiết
NguyenHa ThaoLinh
Xem chi tiết
Lê Thị Vân Anh
Xem chi tiết
Nguyễn Thành Huy
Xem chi tiết
Ngô Quang Đạt
Xem chi tiết
Nguyễn Đỗ Thục Quyên
Xem chi tiết