`a)`
`C = (3x + \sqrt{9x} - 3)/(x + \sqrt{x} - 2) - (\sqrt{x}+1)/(\sqrt{x} + 2) - (\sqrt{x} - 2)/(\sqrt{x} - 1)`
`(x >= 0 ; x` $\neq$ `1)`
`C = (3x + 3\sqrt{x} - 3)/((\sqrt{x} - 1)(\sqrt{x} + 2)) - ((\sqrt{x} + 1)(\sqrt{x} - 1))/((\sqrt{x}- 1)(\sqrt{x} + 2)) - ((\sqrt{x} - 2)(\sqrt{x} + 2))/((\sqrt{x} - 1)(\sqrt{x} + 2))`
`C = (3x + 3\sqrt{x} - 3 - x + 1 - x + 4)/((\sqrt{x} - 1)(\sqrt{x} + 2))`
`C = (3x + 3\sqrt{x} - 2x + 2)/((\sqrt{x} - 1)(\sqrt{x} + 2))`
`C = (x + 3\sqrt{x} + 2)/((\sqrt{x} - 1)(\sqrt{x} + 2))`
`C = ((\sqrt{x} + 1)(\sqrt{x} + 2))/((\sqrt{x} - 1)(\sqrt{x} + 2))`
`C = (\sqrt{x} + 1)/(\sqrt{x} - 1)`
`b)`
`x = 3 + 2\sqrt{2} = 2 + 2\sqrt{2} + 1 = (\sqrt{2} + 1)^2`
`=> \sqrt{x} = \sqrt{(\sqrt{2} + 1)^2} = \sqrt{2} + 1`
`C = (\sqrt{2} + 1 + 1)/(\sqrt{2} - 1 + 1)`
`C = (\sqrt{2} + 2)/(\sqrt{2})`
`C = 1 + \sqrt{2}`