Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Ngọc Hân

Cho biểu thức B =1/52 + 1/62 + 1/72 + ... + 1/1002. Chứng tỏ rằng 1/6 < B < 1/4

mn giúp mik với !

OH-YEAH^^
13 tháng 8 2021 lúc 15:06

Ta có: \(\dfrac{1}{5^2}>\dfrac{1}{5.6};\dfrac{1}{6^2}>\dfrac{1}{6.7};...;\dfrac{1}{100^2}>\dfrac{1}{100.101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{96}{505}>\dfrac{1}{6}\) (1)

Ta có: \(\dfrac{1}{5^2}< \dfrac{1}{4.5};\dfrac{1}{6^2}< \dfrac{1}{5.6};\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\) (2)

Từ (1) và (2)⇒\(\dfrac{1}{6}< B< \dfrac{1}{4}\)

 

 


Các câu hỏi tương tự
Nguyễn Trúc
Xem chi tiết
6a01dd_nguyenphuonghoa.
Xem chi tiết
6a01dd_nguyenphuonghoa.
Xem chi tiết
Yuki_Kali_Ruby
Xem chi tiết
Yuki_Kali_Ruby
Xem chi tiết
frozen elsa and ana
Xem chi tiết
phonglam2
Xem chi tiết
tran khoi my
Xem chi tiết
Nguyễn Hữu An
Xem chi tiết