b) B = 22 + 42 + 62 + ... + 982
\(\frac{1}{4}B=1^2+2^2+3^2+...+49^2\)
\(\frac{1}{4}B=1+2\left(1+1\right)+3\left(2+1\right)+...+49\left(48+1\right)\)
\(\frac{1}{4}B=1+2+1.2+2.3+3+...+48.49+49\)
\(\frac{1}{4}B=\left(1+2+3+...+49\right)+\left(1.2+2.3+...+48.49\right)\)
đặt A = 1.2 + 2.3 +...+ 48.49 ta có:
A = 1.2 + 2.3 +...+ 48.49
3A = 1.2.3 + 2.3.( 4 - 1) + ... + 48.49.( 50 - 47 )
3A = 1.2.3 + 2.3.4 - 1.2.3 +...+ 48.49.50 - 47.48.49
3A = 48.49.50
A = \(\frac{48.49.50}{3}=39200\)
thay A = 39200 vào \(\frac{1}{4}B\) ta có:
\(\frac{1}{4}B=\left(1+2+3+...+49\right)+39200\)
\(\frac{1}{4}B=1225+39200\)
\(\frac{1}{4}B=40425\)
B = 40425.4
B = 161700
vậy B = 161700
3A=1.2.3+2.3.4+3.4.3+.......+99.100.3
3A=1.2.(3-0) + 2.3 (4-1) + 3.4 . (5-2)+.......+ 99.100(101-98)
3A=(1.2.3+2.3.4+3.4.5+......+98.99.100)-(0.1.2+1.2.3+.....+98.99.100)
3A=99.100.101-0
3A=999900
A=999900:3
A=333300