Bài 1 : Rút gọn biểu thức
A= \(\sqrt{8}-2\sqrt{2}+\sqrt{20}-2\sqrt{5}-2\)
B= \(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\) Với x > 0 ; x≠1
Tìm giá trị của x để B = A
Bà 2 : Cho biểu thức : \(\left(\frac{1}{x+\sqrt{x}}-\frac{1}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+2\sqrt{x}+1}\) ( x>0 )
a, Rút gọn biểu thức P
b, Tìm các giá trị của x để P > 1/2
Mn ơi mn giải giúp em với ạ ! em cảm ơn ạ
1. Cho biểu thức: B = \(\left(\sqrt{x}-\dfrac{2}{1+\sqrt{x}}\right):\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{2\sqrt{x}}{1-x}\right)\)với x \(\ge\)0, x\(\ne\)1
a) Rút gọn biểu thức B
b) Tìm giá trị của x để biểu thức B < 10
2. Cho đường thằng (d): y = (1 - 2m) x + m - 1
a) Với giá trị nào của m thì đường thằng (d) tạo với trục Ox một góc nhọn?
b) Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi giá trị của m?
c) Tìm m để khoảng cách từ gốc tọa độ đến đường thằng (d) có giá trị lớn nhất?
3. Cho đường tròn (O,R) đường kính AB. Gọi M là một điểm nằm giữa A và B. Qua M vẽ dây CD vuông góc với AB. Lấy điểm E đối xứng với A qua M.
a) Tứ giác ACED là hình gì? Vì sao?
b) Giả sử R = 6,5 cm, MA = 4 cm. Tính CD
c) Gọi H và K lần lượt là hình chiếu của M trên CA và CB. Chứng minh: MH.MK = \(\dfrac{MC^3}{2R}\)
4. Tìm GTNN của: B = xy + yz + zx trong đó x, y, z thỏa mãn điều kiện x + y + z = 3
Giúp mình với với mơn ạ :vv
Cho biểu thức : A = \(\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right)^2.\frac{x^2-1}{2}-\sqrt{1-x^2}\)
1) Tìm điều kiện của x để biểu thức A có nghĩa
2) Rút gọn biểu thức A
3) Giải phương trình theo x khi A = -2
Cho biểu thức : M = \(\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
a, Rút gọn M
b, Tìm x sao cho M>0.
câu 1: Cho 3 số dương x, y, z thoả mãn x + y + z = 1. Tìm giá trị nhỏ nhất của biểu thức sau:
\(\dfrac{3}{xy+yz+zx}+\dfrac{2}{x^2+y^2+z^2}\)
Câu 2:
a , chứng minh với x > 1 ta có : \(\dfrac{x}{\sqrt{x-1}}\ge2\)
b, Cho a > 1 , b>1 . Tìm min của biểu thức \(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\)
Bài 1. Giải phương trình :
\(\sqrt{x-1}+\sqrt{3-x}=3x^2-4x-2\)
Bài 2. Tìm tất cả các bộ 3 số nguyên không âm (x ; y; z) thoả mãn đẳng thức :
\(2012^x+2013^y=2014^z\)
Bài 3. Cho phương trình bậc hai : \(x^2+\left(m+n\right)+m+1=0\) với m và n là các số nguyên trong đó \(m\ne1\).
a) Chứng minh rằng : Với mọi giá trị của m, luôn có 1 giá trị của n không đổi để phương trình đã cho có nghiệm x nguyên.
b) Chứng minh rằng : Khi phương trình đã cho có hai nghiệm nguyên thì \(\left(m+n\right)^2+m^2\) là hợp số.
HELP MEEEEEEEEEEEEEEEE !!! PLEASE !!!
Tìm x, y biết:
\(a)x+y+\sqrt{8y}+5=4\sqrt{x+1}+\sqrt{2}.\sqrt{xy+y}\)
\(b)x+y\le6\)và \(\frac{1}{x}+\frac{25}{y}=6\) với \(\left(x>0;y>0\right)\)
Rút gọn biểu thức:
\(A=\dfrac{\sqrt{2+\sqrt{4-x^2}}\left[\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right]}{4+\sqrt{4-x^2}}\)với \(-2\le x\le2\)
Rút gọn biểu thức:
\(A=\dfrac{\sqrt{2+\sqrt{4-x^2}}\left[\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right]}{4+\sqrt{4-x^2}}\)với \(-2\le x\le2\)