`a)đk:a>0,a ne 9`
`A=((sqrta+3+sqrta-3)/(a-9)).((sqrta-3)/sqrta)`
`=((2sqrtx)/(a-9)).((sqrta-3)/sqrta)`
`=2/(sqrta+3)`
`b)A>1/2`
`<=>2/(sqrta+3)>1/2`
`<=>sqrta+3<4`
`<=>sqrta<1`
`<=>a<1`
KẾt hợp đkxđ:`0<x<1`
ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne9\end{matrix}\right.\)
a) Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-3}+\dfrac{1}{\sqrt{a}+3}\right)\left(1-\dfrac{3}{\sqrt{a}}\right)\)
\(=\dfrac{\sqrt{a}+3+\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\cdot\dfrac{\sqrt{a}-3}{\sqrt{a}}\)
\(=\dfrac{2\sqrt{a}}{\sqrt{a}+3}\cdot\dfrac{1}{\sqrt{a}}\)
\(=\dfrac{2}{\sqrt{a}+3}\)
b) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{2}{\sqrt{a}+3}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{4-\left(\sqrt{a}+3\right)}{2\left(\sqrt{a}+3\right)}>0\)
mà \(2\left(\sqrt{a}+3\right)>0\forall a\)
nên \(1-\sqrt{a}>0\)
\(\Leftrightarrow\sqrt{a}< 1\)
hay a<1
Kết hợp ĐKXĐ, ta được: 0<a<1