ta có:
a+b+c=9=>(a+b+c)^2=9^2
=>a^2+b^2+c^2+2(ab+bc+ca)=81
mà a^2+b^2+c^2=53
=>53+2(ab+bc+ca)=81
=>ab+bc+ca=14
ta có:
a+b+c=9=>(a+b+c)^2=9^2
=>a^2+b^2+c^2+2(ab+bc+ca)=81
mà a^2+b^2+c^2=53
=>53+2(ab+bc+ca)=81
=>ab+bc+ca=14
CMR: 2(a3 + b3 + c3) + 3abc ≥ ab + bc + ca biết a + b + c = 1 và a, b, c dương
2. Chứng minh rằng:
a. a3+ b3 = (a + b)3 - 3ab (a + b)
b. a3+ b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)
Cho a,b,c >0 CMR a3/b+b3/c+c3/a>=ab+bc+ca
Mong mọi người giải chi tiết
Bài 1: Cho abcd=1. Tính P = aabc+ab+a+1+bbcd+bc+d+1+ccda+cd+a+1+ddab+da+b+1aabc+ab+a+1+bbcd+bc+d+1+ccda+cd+a+1+ddab+da+b+1
Bài 2: Cho a, b, c luôn dương và a3+b3+c3=3abca3+b3+c3=3abc. Tính Q = (1+ab)(1+bc)(1+ca)(1+ab)(1+bc)(1+ca)
Bài 3: Cho x2+y2+z2−zx+4y=6z−14x2+y2+z2−zx+4y=6z−14. Tính P = x1945+y2+zx1945+y2+z
Bài 4: Cho a+b+c=1
a^2+b^2+c^2=1
a^3+b^3+c^3=1
Tính a^2005+b^2006+c^2007
Bài 5: Cho 1a+1b+1c=51a+1b+1c=5 và a+b+c=abc. Tính 1a2+1b2+1c2
Bài 1:
a) Cho a + b + c = 0. CMR: a3 + b3+ c3 = 3abc
b) Cho a3 + b3 + c3 = 3abc và a. b, c đôi một khác nhau. CMR: a + b + c = 0
Bài 1:
a) Cho a + b + c = 0. CMR: a3 + b3+ c3 = 3abc
b) Cho a3 + b3 + c3 = 3abc và a. b, c đôi một khác nhau. CMR: a + b + c = 0
(1) (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
(2) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc
(4) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)
(6) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
(8) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2
(10) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33
(12)ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
Chứng minh giùm mik hằng đẳng thức kia vs
cmr
c) (a+b+c)3 -a 3 -b 3 -c 3=3(a+b)(b+c)(c+a)
d) a3+b3+c3 -3abc=(a+b+c)(a2+b2 +c2 -ab-bc-ca)
e) (a+b+c)3 -(b+c-a)3 -(a+c-b) 3 -(a+b-c)3=24abc
Phân tích thành nhân tử:
a. A = ab(a - b) + b(b - c) + ca(c - a)
b. B = a(b2 - c2) + b(c2 - a2) + c(a2 - b2)
c. C = (a + b + c)3 - a3 - b3 - c3