a: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
\(\widehat{FBC}=\widehat{ECB}\)
Do đó: ΔFBC=ΔECB
Suy ra: BE=CF và BF=CE
Ta có: AF+BF=AB
AE+EC=AC
mà BF=EC
và AB=AC
nên AF=AE
Xét ΔABC có AF/AB=AE/AC
nên FE//BC
b: Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)
nên ΔBIC cân tại I
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng