Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0 với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho có nghiệm đúng với mọi x ∈ - ∞ ; 0
A. m ≥ 2 - 2 3 3
B. m > 2 - 2 3 3
C. m > 2 + 2 3 3
D. m ≥ - 2 - 2 3 3
Tìm tất cả các giá trị thực của tham số m để bất phương trình 2 x + 3 + 5 - 2 x ≤ m nghiệm đúng với mọi x ∈ - ∞ ; log 2 5
A. m ≥ 4
B. m < 4
C. m ≥ 2 2
D. m < 2 2
Tìm tất cả các giá trị thực của tham số m để bất phương trình 3 x + 3 + 5 - 3 x ≤ m có nghiệm đúng với mọi x ∈ ( - ∞ ; log 3 5 ]
A. m ≥ 2 2
B. m ≥ 4
C. m ≤ 4
D. m ≤ 2 2
Cho bất phương trình x 4 + x 2 + m 3 - 2 x 2 + 1 3 + x 2 x 2 - 1 > 1 - m (m là tham số). Tìm tất cả các giá trị thực của tham số m để bất phương trình nghiệm đúng với mọi x > 1
A. m > 1
B. m ≥ 1
C. m > 5 4
D. m ≥ 5 4
Cho bất phương trình 1 + log 5 x 2 + 1 ≥ log 5 m x 2 + 4 x + m (1). Tìm tất cả các giá trị của m để (1) nghiệm đúng với mọi số thực x.
A. 2 ≤ m ≤ 3
B. 2 < m ≤ 3
C. - 3 ≤ m ≤ 7
D. [ m ≤ 3 m ≥ 7
Cho bất phương trình 3 + x + 1 - x ≤ m + 1 - x 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để bất phương trình có nghiệm thực.
A. m ≥ 25 4
B. m ≥ 4
C. m ≥ 6
D. m ≥ 7
Tìm tất cả các giá trị thực của tham số m để bất phương trình x 2 + 3 x + 3 x + 1 ≥ m nghiệm đúng với mọi x ∈ 0 ; 1
A. m ≥ 3
B. m ≤ 7 2
C. m ≥ 7 2
D. m ≤ 3
Có tất cả bao nhiêu số nguyên m để phương trình log ( m - x ) = 3 log ( 4 - 2 x - 3 ) có hai nghiệm thực phân biệt.
A. 6.
B. 2.
C. 3.
D. 5.
Cho bất phương trình m .3 x + 1 + 3 m + 2 4 − 7 x + 4 + 7 x > 0 , với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x ∈ − ∞ ; 0 .
A. m > 2 + 2 3 3 .
B. m > 2 − 2 3 3 .
C. m ≥ 2 − 2 3 3 .
D. m ≥ − 2 − 2 3 3 .