Lời giải:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow \frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
\(\Leftrightarrow \frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)
\(\Leftrightarrow \frac{y+z}{x}+1=\frac{z+x}{y}+1=\frac{x+y}{z}+1\)
\(\Leftrightarrow \frac{y+z+x}{x}=\frac{z+x+y}{y}=\frac{x+y+z}{z}(*)\)
Nếu \(x+y+z=0\)
\(\Rightarrow x+y=-z; y+z=-x; z+x=-y\)
\(\Rightarrow B=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{yzx}=\frac{(-z)(-x)(-y)}{yzx}=-1\)
Nếu $x+y+z\neq 0$. Khi đó từ $(*)$ suy ra $x=y=z$
\(\Rightarrow B=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=(1+\frac{x}{x})(1+\frac{x}{x})(1+\frac{x}{x})=(1+1)(1+1)(1+1)=8\)
Vậy................