Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mạc Hy

cho ba số x, y, z là ba số khác 0 thỏa mãn điều kiện: \(\frac{y+z-x}{x}\) = \(\frac{z+x-y}{y}\) = \(\frac{x+y-z}{z}\)

hãy tính giá trị biểu thức: B = (\(1+\frac{x}{y}\))(\(1+\frac{y}{z}\))(\(1+\frac{z}{x}\))

Akai Haruma
1 tháng 4 2019 lúc 3:11

Lời giải:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Leftrightarrow \frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Leftrightarrow \frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)

\(\Leftrightarrow \frac{y+z}{x}+1=\frac{z+x}{y}+1=\frac{x+y}{z}+1\)

\(\Leftrightarrow \frac{y+z+x}{x}=\frac{z+x+y}{y}=\frac{x+y+z}{z}(*)\)

Nếu \(x+y+z=0\)

\(\Rightarrow x+y=-z; y+z=-x; z+x=-y\)

\(\Rightarrow B=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{yzx}=\frac{(-z)(-x)(-y)}{yzx}=-1\)

Nếu $x+y+z\neq 0$. Khi đó từ $(*)$ suy ra $x=y=z$

\(\Rightarrow B=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=(1+\frac{x}{x})(1+\frac{x}{x})(1+\frac{x}{x})=(1+1)(1+1)(1+1)=8\)

Vậy................


Các câu hỏi tương tự
Măm Măm
Xem chi tiết
dream XD
Xem chi tiết
linh angela nguyễn
Xem chi tiết
kim taehyung
Xem chi tiết
Nhung Moon
Xem chi tiết
linh angela nguyễn
Xem chi tiết
Rosie
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết