Cho 3 số x,y,z khác 0 thoả mãn điều kiện \(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức :
\(B=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
1,cho x,y,z khác 0 và x+y-z=0.tính:
B=\(\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1-\frac{y}{z}\right)\)
1 . Tìm \(n\in Z\) sao cho \(2n-3⋮n+1\)
2 . Cho x , y , z \(\ne0\) và x - y - z = 0 . Tính giá trị của biểu thức : \(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
Có bao nhiêu cặp số (x; y; z) thỏa mãn \(\left(x-\frac{1}{3}\right)\left(y-\frac{1}{2}\right)\left(z-5\right)=0\) và x + 2 = y + 1 = z + 3?
Cho x , y, z \(\ne0\) và \(x+y-z=0\). Tính \(A=\left(1-\frac{z}{x}\right).\left(1-\frac{y}{z}\right).\left(1+\frac{x}{y}\right)\)
Bài 1: Tìm GTNN của biểu thức sau: \(A=\left|x+2011\right|+\left|x+2012\right|\)
Bài 2: Cho x,y,z\(\ne0\) và x-y-z=0, tính giá trị biểu thức: \(\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)
Bài 3: Ba đường cao của tam giác ABC có độ dài bằng 4;12;x. Biết rằng x là một số tự nhiên. Tìm x.
bài 1 tính
\(A=\frac{a+b}{b+c}\) biết \(\frac{b}{a}=2;\frac{c}{b}=3\)
bài 2 tìm x
a) \(\frac{72-x}{7}=\frac{x-40}{9}\)
b) \(\frac{x+4}{20}=\frac{5}{x+4}\)
bài 3 tìm x,y
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
bài 8 tìm x,y,z
a) x:y:z=3:4:5 và 2x2+2y2-3z2=-100
b)\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
c) \(\left|x-3\right|+\left|y+5\right|+\left|x+y+z\right|=0\)
d) \(\left|2x-5\right|+\left|2y-z\right|+\left|4z-2\right|=0\)
\(\frac{x}{y+z+5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{1}{2}=\left(x+y+z\right)\)
Tìm x,y,z
cho ba số x, y, z là ba số khác 0 thỏa mãn điều kiện: \(\frac{y+z-x}{x}\) = \(\frac{z+x-y}{y}\) = \(\frac{x+y-z}{z}\)
hãy tính giá trị biểu thức: B = (\(1+\frac{x}{y}\))(\(1+\frac{y}{z}\))(\(1+\frac{z}{x}\))