\(P=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\\a+b+c=3\end{cases}}\Leftrightarrow a=b=c=1\)
Vậy.....
\(P=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\\a+b+c=3\end{cases}}\Leftrightarrow a=b=c=1\)
Vậy.....
Cho các số thực a. b, c, d thỏa mãn a^2 + b^2 - 2a +4b + 1 = 0 và 2c - d + 1 = 0. tìm giá trị nhỏ nhất của biêu thức P= (a-c)^2 + (b-d)^2
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm giá trị lớn nhất của biểu thức
\(P=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\)
Cho ba số thực a;b;c thỏa mãn hệ sau: \(\hept{\begin{cases}a+b+c=4\\a^2+b^2+c^2=6\end{cases}}\)
Hãy giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a3 + b2c + bc2.
Cho a,b,c là 3 số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\). Tìm giá trị lớn nhất của
\(T=\frac{1}{2+a^2}+\frac{1}{2+b^2}+\frac{1}{2+c^2}\)
Cho số nguyên dương a,b,c thỏa mãn a + b + c = 3 . Tìm giá trị nhỏ nhất của \(A=4a^2+3b^2+8c^2\)
Giúp em với ạ
Cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của \(S=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)
Cho các số thực dương x,y thỏa mãn x+2y+3xy=3 . Biết rằng biểu thức P= x+y đạt giá trị nhỏ nhất bằng \(\frac{a\sqrt{b}-c}{3}\)
trong đó a,b,c là các số nguyên dương . Gọi S là tập hợp các giá trị của M= a+b+c , tính tổng bình phương các phần tử của S
Cho \(a,b,c>0\) thỏa mãn \(\sum a^2+\left(\sum a\right)^2\le4\). Tìm giá trị nhỏ nhất của biểu thức \(S=\sum\limits^{ }_{cyc}\dfrac{ab+1}{\left(a+b\right)^2}\)
Cho các số thực dương a,b thỏa mãn \(a+b=\frac{1}{a^2}+\frac{1}{b^2}\). Tìm giá trị nhỏ nhất \(P=a^4+b^4+a^2b^2-a^2-b^2+3\)