Sửa lại đề: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}$.
--------------
Lời giải:
\(\left\{\begin{matrix} a+b+c=2021\\ \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}\end{matrix}\right.\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0\)
\(\Leftrightarrow (a+b).\frac{c(a+b+c)+ab}{abc(a+b+c)}=0\)
\(\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\Leftrightarrow (a+b)(b+c)(c+a)=0\)
$\Leftrightarrow (2021-c)(2021-a)(2021-b)=0$
Do đó ít nhất 1 trong 3 số $a,b,c$ có 1 số có giá trị bằng $2021$