Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Anh Thư

Cho ba số a, b, c thỏa mãn \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\). Tính giá trị biểu thức: \(P=\frac{\left(a^{11}+b^{11}\right)\left(b^9+c^9\right)\left(c^{2001}+a^{2001}\right)}{a^{24}+b^4+c^{2018}}\)

Xyz OLM
3 tháng 4 2021 lúc 6:29

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

=> \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{\left(a+b+c\right).c}\)

Khi a + b = 0

=> (a + b)(b + c)(c + a) = 0 (2)

Nếu a + b \(\ne0\)

=> ab = -(a + b + c).c

=> ab + (a + b + c).c = 0

=> ab + ac + bc + c2 = 0

=> (a + c)(b + c) = 0

=> (a + b)(b + c)(a + c) = 0 (1)

Từ (2)(1) => (a + b)(b + c)(a + c) = 0 \(\forall a;b;c\)

=> a = -b hoặc b = -c hoặc = c = -a

Nếu a = -b => a11 = -b11 => a11 + b11 = 0

=> P = 0 (3)

Nếu b = -c => b9 = - c9 => b9 + c9 = 0

=>P = 0 (4)

Nếu c = -a => c2001 = -a2001 => c2001 + a2001 = 0

=> P = 0 (5)

Từ (3);(4);(5) => P = 0 trong cả 3 trường hợp 

Vạy P = 0

Khách vãng lai đã xóa
UchihaSasuke
3 tháng 4 2021 lúc 6:52

Xyz là ad ak?

Khách vãng lai đã xóa

Các câu hỏi tương tự
Hồ Quốc Khánh
Xem chi tiết
Lung Thị Linh
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết
Mi Trần
Xem chi tiết
Ngọc Quách
Xem chi tiết
quản đức phú
Xem chi tiết
Xem chi tiết
Vũ Minh Anh
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết