Cho \(A=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}\) (2017 dấu căn bậc 2)
Chứng minh rằng: \(A< 5\)
Help me!
A=\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+\sqrt{20}}}}}\)( 2017 dấu căn bậc hai )
CM : A< 5
Cho biểu thức:
\(A=\sqrt{20+\sqrt{20+...+\sqrt{20+\sqrt{20}}}}\)
(2017 dấu căn bậc hai)
C/M : A<5
A=\(\sqrt{20+\sqrt{20+\sqrt{20}+...+\sqrt{20}}}\)(2017 dấu văn bậc 2)
Chứng Minh: A < 5
Cho \(A=\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}\); \(B=\sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24+...\sqrt[3]{24}}}}\)
Mỗi số đều có 2005 dấu căn. Tìm [A+B]?
Biến đổi đễ mẫu không còn chứa căn bậc hai
a) \(\frac{21}{\sqrt{14}}\)
b)\(\frac{3}{\sqrt{2}}+\frac{\sqrt{2}}{3}\)
c) \(2\sqrt{5}-3\sqrt{80}-4\sqrt{500}+\frac{20}{\sqrt{5}}\)
Chứng tỏ
a, \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
b.\(\sqrt{2}+\sqrt{8}< \sqrt{3}+3\)
c,\(\sqrt{5}+\sqrt{10}>5,3\)
Chứng tỏ\(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
Chứng tỏ rằng:
a)\(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
b)\(\sqrt{2}+\sqrt{8}< \sqrt{3}+3\)
c)\(\sqrt{37}-\sqrt{14}>6-\sqrt{15}\)