\(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)
Để \(A_{max}\) thì \(1-\dfrac{4}{n-2}\) max
=>\(-\dfrac{4}{n-2}\) max
=>\(\dfrac{4}{n-2}\) min
=>n-2=-1
=>n=1
Để \(A_{min}\) thì \(\dfrac{4}{n-2}\) max
=>n-2=1
=>n=3
Vậy: \(A_{max}=\dfrac{1-6}{1-2}=\dfrac{-5}{-1}=5\) khi n=1
\(A_{min}=\dfrac{3-6}{3-2}=\dfrac{-3}{1}=-3\) khi n=3