Sủa đề : Cho \(a;b\ge1\) , cmr : \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
Biến đổi tương đương ta có :
\(bdt\Leftrightarrow\frac{1+b^2+1+a^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\frac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow a^2+b^2+2+a^3b+ab^3+2ab\ge2a^2b^2+2a^2+2b^2+2\)
\(\Leftrightarrow a^2+b^2+2+a^3b+ab^3+2ab-2a^2b^2-2a^2-2b^2-2\ge0\)
\(\Leftrightarrow-a^2-b^2+a^3b+ab^3+2ab-2a^2b^2\ge0\)
\(\Leftrightarrow\left(-a^2-b^2+2ab\right)+\left(a^3b+ab^3-2a^2b^2\right)\ge0\)
\(\Leftrightarrow-\left(a-b\right)^2+ab\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\)(luôn đúng \(\forall a;b\ge1\))
Vậy bđt đã được chứng minh