CMR: với a, b, c > 0 thì:
\(\sqrt{\frac{a}{bc}}+\sqrt{\frac{b}{ca}}+\sqrt{\frac{c}{ab}}\ge\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\)
Giả sử a;b;c là dộ dài 3 cạnh của 1 tam giác. CMR :
\(\frac{1}{\sqrt{ab+ca}}+\frac{1}{\sqrt{bc+ab}}+\frac{1}{\sqrt{ca+bc}}\ge\frac{1}{\sqrt{a^2+bc}}+\frac{1}{\sqrt{b^2+ca}}+\frac{1}{\sqrt{c^2+ab}}\)
Cho ab+bc+ca=3abc , a,b,c >0
C/m \(\frac{1}{\sqrt{a^2+b}}+\frac{1}{\sqrt{b^2+c}}+\frac{1}{\sqrt{c^2+a}}\ge\frac{3}{\sqrt{2}}\)
Cho a,b,c>0 và \(ab+bc+ca\ge\frac{4}{3}\).chứng minh
\(\sqrt{a^2+\frac{1}{\left(b+1\right)^2}}+\sqrt{b^2+\frac{1}{\left(c+1\right)^2}}+\sqrt{c^2+\frac{1}{\left(a+1\right)^2}}\ge\frac{\sqrt{181}}{5}\)
Bài 1 :Cho a,b,c dương thỏa mãn a+b+c=2
CMR \(\frac{bc}{\sqrt{3a^2+4}}+\frac{ca}{\sqrt{3b^2+4}}+\frac{ab}{\sqrt{3c^2+4}}\ge\frac{\sqrt{3}}{3}\)
Bài 2:Cho a,b,c>0. CMR
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
b1 sử dụng HDT hoặc co-si
a)cho x\(\ge\)0,y\(\ge\)1,z\(\ge\)2cmr \(x\sqrt{y-1}+y\sqrt{x-1}\le xy\)
b)cho \(x\ge0,y\ge1,z\ge2cmr\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{1}{2}\left(x+y+z\right)\)
c)cho a,b,c\(\ge0\)cmr \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
Cho a,b,c > 0 và ab + bc + ca \(\ge\frac{4}{3}\)
Chứng minh :
\(\sqrt{a^2+\frac{1}{\left(b+1\right)^2}}+\sqrt{b^2+\frac{1}{\left(c+1\right)^2}}+\sqrt{c^2+\frac{1}{\left(a+1\right)^2}}\ge\frac{\sqrt{181}}{5}\)
cho a,b,c>0, CMR: \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{1}{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}\ge a+b+c\)
Chứng minh BĐT: \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)