Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Unirverse Sky

Cho \(a,b,c,d,e\)là các số thực . Chứng minh rằng \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

 

Nguyễn Việt Lâm
8 tháng 3 2022 lúc 17:18

Với mọi a;b;c;d;e ta có:

\(\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\) (đpcm)

Dấu "=" xảy ra khi \(\dfrac{a}{2}=b=c=d=e\)

Trên con đường thành côn...
8 tháng 3 2022 lúc 17:19

BĐT

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4a\left(b+c+d+e\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-\left(4ab+4ac+4ad+4ae\right)\ge0\)

\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4ae+4e^2\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\), luôn đúng với \(\forall a,b,c,d,e\in R\)

Dấu "=" xảy ra khi và chỉ khi \(a=2b=2c=2d=2e\)


Các câu hỏi tương tự
Trí Tiên
Xem chi tiết
qwertyuiopasdfghjkl
Xem chi tiết
Trang Hoang
Xem chi tiết
Ngô Văn Tuyên
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Phạm Văn Tú
Xem chi tiết
binhbinhthd
Xem chi tiết
olomyobbb y
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết