Cho b^2 = ac ; c^2 = bd với b, c, d ≠ 0; b+c ≠ 0; b^3+c^3≠ d^3 3. Chứng minh rằng:
a) \(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)
b) \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
Cho a/b=b/c=c/d với b+c+d khác 0. Chứng minh: +) a^3+b^3+c^3/ b^3+c^3 - d^3=(a+d-c/b+c-d)^3
Cho b^2= ac, c^2= bd với b,c,d khác 0, b+c khác d, b^3+c^3 khác d^3 : a^3+b^3-c^3 / b^3+c^3-d^3= ( a+b+c/b+c-a)^3
cho a/b=b/c=c/d CMR: a^3+b^3+c^3/b^3+c^3+d^3=a/d
Cho a/b = b/c = c/d (b,c,d # 0). Chung minh rang
a^3 + b^3 + c^3/ b^3+ c^3 + d^3 =a/b
1. Cho tỉ lệ thức a/b=c/d chứng minh rằng
a. 2006*(a+c)/2006*a=b+d/b
b.a-b/a+b=c-d/c+d
c.2*a+5*b/3*a-4*b=2*c+5*d/3*c-4*d
d. (a+b/c+d)^3=a^3-b^3/c^3-d^3
Cho tỉ lệ thức a/b = c/d. Chứng yor rằng: 1) a/a+b = c/c+d; 2) 2.a+b/a-2.b = 2.c+d/c-2.d; 3) a+b/a-c = c+d=c-d; 4) 5.a+3.b/5.c+3.d = 5.a-3.b/5.c-3.d
Cho b^2=ac;c^2=bd với b;c;d khác 00 ; b+c khác d ; b^3+c^3 khác d^3
Chứng minh rằng
(a^3+b^3-c^3) / (b^3+c^3-d^3) = [(a+b-c)/(b+c-d)]^3
cho a/b=b/c=c/d chung minh rằng a^3+c^3-b^3/c^3+b^3-d^3=a/d