Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duong

Cho tỉ lệ thức a/b = c/d. Chứng yor rằng: 1) a/a+b = c/c+d; 2) 2.a+b/a-2.b = 2.c+d/c-2.d; 3) a+b/a-c = c+d=c-d; 4) 5.a+3.b/5.c+3.d = 5.a-3.b/5.c-3.d

1: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

2: \(\dfrac{2a+b}{a-2b}=\dfrac{2\cdot bk+b}{bk-2b}=\dfrac{b\left(2k+1\right)}{b\left(k-2\right)}=\dfrac{2k+1}{k-2}\)

\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{d\left(2k+1\right)}{d\left(k-2\right)}=\dfrac{2k+1}{k-2}\)

Do đó: \(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)

3: \(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\cdot\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

Do đó: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

4: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5\cdot bk+3b}{5dk+3d}=\dfrac{b\left(5k+3\right)}{d\left(5k+3\right)}=\dfrac{b}{d}\)

\(\dfrac{5a-3b}{5c-3d}=\dfrac{5\cdot bk-3b}{5\cdot dk-3d}=\dfrac{b\left(5k-3\right)}{d\left(5k-3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)


Các câu hỏi tương tự
Duong
Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết
Hinata
Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết
Bùi anh tuấn
Xem chi tiết
Minh Vu
Xem chi tiết
yvdhrjgm
Xem chi tiết
Pham Duy hung
Xem chi tiết
Nguyễn Huy Việt
Xem chi tiết