ta có
a+b+c+d=0
=> b+c=-(a+d) => (b+c)3=-(a+d)3
=> b3+c3+3bc(b+c)= -[a3+d3+3ad(a+d)]
=> a3+b3+c3+d3=-3ad(a+d)-3bc(b+c)= 3ad(b+c)-3bc(b+c)
=3(b+c)(ad-bc)
\(Taco:a+b+c+d=0\)
\(\text{\Rightarrow b+c=-(a+d) }\)
\(\Rightarrow\text{(b+c)^3=-(a+d)^3}\)
\(\text{\Rightarrow b^3+c^3+3bc(b+c)}\)
\(\text{= -[a^3+d^3+3ad(a+d)]}\)
\(\text{\Rightarrow a^3+b^3+c^3+d^3=-3ad(a+d)-3bc(b+c)= 3ad(b+c)-3bc(b+c)}\)
\(\text{=3(b+c)(ad-bc)}\)