Cho a.b.c=1
CMR \(\frac{1}{1+ab}+a+\frac{1}{1+bc}+b+\frac{1}{1+ac}+c=1\)
Cho a,b,c là các số thực dương sao cho a.b.c=1. Tìm giá trị nhỏ nhất của
A=\(\frac{a^2+1}{ab+a+1}+\frac{b^2+1}{bc+b+1}+\frac{c^2+1}{ca+c+1}\)
Cho a, b, c thuộc R sao cho a.b.c = 2008.
CMR : \(\frac{2008a}{ab+2008a+2008}+\frac{b}{bc+b+2008}+\frac{c}{ca+c+1}=1\)
Cho \(a.b.c\ne1;-1\)và \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ca+1}{a}\).
Cmr a=b=c
cho a.b.c= 2016
tính\(\frac{a}{ab+a+2016}+\frac{b}{bc+b+1}+\frac{2016c}{ac+2016c+2016}\)giải chi tiết hộ mình
Bài 1 Cho a,b,c,d là 3 số không âm CMR
\(a,\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}\le\frac{a+b+c}{2}\)
\(b,\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{a+d}\ge\frac{a+b+c+d}{2}\)
Bài 2 Cho a,b,c là 3 số không âm thỏa mãn a+b+c=1 CMR
\(a,\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le3,5\)
\(b,\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\le\sqrt{6}\)
Bài 3 Cho \(|x|< 1;|y|< 1CMR\) \(\frac{1}{1-x^2}+\frac{1}{1-y^2}\ge\frac{2}{1-xy}\)
CMR :
\(\frac{a-b}{1+ab}+\frac{b-c}{1+bc}+\frac{c-a}{1+ac}=\frac{a-b}{1+ab}-\frac{b-c}{1+bc}-\frac{c-a}{1+ac}\)
Cho a.b.c=1.CM
\(\frac{a}{a.b+a+1}+\frac{b}{bc+c+1}+\frac{c}{ca+c+1}=1\)
cho a.b.c = 2016 tính : \(\frac{a}{ab+a+2016}+\frac{b}{bc+b+1}+\frac{2016.c}{a.c+2016.c+2016}\)