Ta có 1/a + 1/b + 1/c = (bc + ac + ac)/abc = ab + bc + ca
=> a + b + c = ab + bc + ca
<=> a + b + c - ab - bc - ca = 0
<=> a + b + c - ab - bc - ac + abc - 1 = 0
<=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0
<=> -a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0
<=> (b - 1)(-a + 1 -c + ac) = 0
<=> (b - 1)[ (-a + 1) + (ac - c) ] = 0
<=> (b - 1)[ -(a - 1) + c(a - 1) ] = 0
<=> (a - 1)(b - 1)(c - 1) = 0
<=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0
<=> a = 1 hoặc b = 1 hoặc c = 1
Từ abc=1=>c=1/ab
Và a+b+c=1/a+1/b+1/c
<=>a+b+1/ab=1/a+1/b+ab
<=>ab-a-b+1-(1/ab-1/a-1/b+1)=0
<=>a(b-1)-(b-1)-1/a(1/b-1)-(1/b-1)=0
<=>(b-1)(a-1)-(1/b-1)(1/a-1)=0
<=>(a-1)(b-1)-(1-b/b)(1-a/a)=0
<=>(a-1)(b-1)-(a-1)(b-1)/ab=0
<=>(a-1)(b-1)(1-1/ab)=0
<=>(a-1)(b-1)(c-1)=0
<=>a-1=0 hoặc b-1=0 hoặc c-1=0
=>a=1 hoặc b=1 hoặc c=1 (đpcm)