Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trung Nguyen

Cho abc=1 và \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\). CMR: Ít nhất 1 trong 3 số a,b,c có giá trị bằng 1

Nguyễn Xuân Anh
4 tháng 1 2018 lúc 0:18

Ta có 1/a + 1/b + 1/c = (bc + ac + ac)/abc = ab + bc + ca 
=> a + b + c = ab + bc + ca 
<=> a + b + c - ab - bc - ca = 0 
<=> a + b + c - ab - bc - ac + abc - 1 = 0 
<=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0 
<=> -a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0 
<=> (b - 1)(-a + 1 -c + ac) = 0 
<=> (b - 1)[ (-a + 1) + (ac - c) ] = 0 
<=> (b - 1)[ -(a - 1) + c(a - 1) ] = 0 
<=> (a - 1)(b - 1)(c - 1) = 0 
<=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0 
<=> a = 1 hoặc b = 1 hoặc c = 1 
 

Doann Nguyen
4 tháng 1 2018 lúc 3:33

Từ abc=1=>c=1/ab

Và a+b+c=1/a+1/b+1/c

<=>a+b+1/ab=1/a+1/b+ab

<=>ab-a-b+1-(1/ab-1/a-1/b+1)=0

<=>a(b-1)-(b-1)-1/a(1/b-1)-(1/b-1)=0

<=>(b-1)(a-1)-(1/b-1)(1/a-1)=0

<=>(a-1)(b-1)-(1-b/b)(1-a/a)=0

<=>(a-1)(b-1)-(a-1)(b-1)/ab=0

<=>(a-1)(b-1)(1-1/ab)=0

<=>(a-1)(b-1)(c-1)=0

<=>a-1=0 hoặc b-1=0 hoặc c-1=0

=>a=1 hoặc b=1 hoặc c=1 (đpcm)


Các câu hỏi tương tự
Vinh Thúy
Xem chi tiết
HoàngMiner
Xem chi tiết
Quyết Tâm Chiến Thắng
Xem chi tiết
trần văn trung
Xem chi tiết
Minh Nguyễn
Xem chi tiết
Cao Đăng Bảo
Xem chi tiết
Nguyễn Trần An Thanh
Xem chi tiết
trần kim ngân
Xem chi tiết
Mai Thành Đạt
Xem chi tiết