Ta có:
\(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Leftrightarrow c^2-a^2-b^2=2ab\)
\(\Leftrightarrow\left(c^2-a^2-b^2\right)^2=\left(2ab\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4-2c^2a^2-2b^2c^2+2a^2b^2=4a^2b^2\)
\(\Leftrightarrow a^4+b^4+c^4=2c^2a^2+2b^2c^2+2a^2b^2\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2c^2a^2+2b^2c^2+2a^2b^2\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)
Ta có: \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2.\left(ab+ac+bc\right)=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)
Thiếu dữ kiện
ta có (a2+b2+c2)2=2(a4+b4+c4)
<=> a4+b4+c4+2a2b2+2b2c2+2c2a2=2a4+2b4+2c4
<=> a4+b4+c4+2a2b2+2b2c2+2c2a2-2a4-2b4-2c4=0
<=> -a4-b4-c4+2a2b2+2b2c2+2c2a2=0
rùi tự làm tiếp