Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thắng Nguyễn

Cho \(a,b,c>0;ab+bc+ca=1\).Chứng minh \(\frac{a+b}{1+c^2}+\frac{b+c}{1+a^2}+\frac{c+a}{1+b^2}\ge\frac{9}{2\left(a+b+c\right)}\)

Hoàng Lê Bảo Ngọc
17 tháng 10 2016 lúc 4:43

Từ giả thiết ta có \(1+c^2=ab+bc+ac+c^2=\left(a+c\right)\left(b+c\right)\) ; \(1+a^2=ab+bc+ac+a^2=\left(a+b\right)\left(a+c\right)\)

\(1+b^2=ab+bc+ac+b^2=\left(b+a\right)\left(b+c\right)\)

Suy ra \(\frac{a+b}{1+c^2}+\frac{b+c}{1+a^2}+\frac{c+a}{1+b^2}=\frac{a+b}{\left(c+a\right)\left(c+b\right)}+\frac{b+c}{\left(a+b\right)\left(a+c\right)}+\frac{c+a}{\left(b+a\right)\left(b+c\right)}\)

\(=\frac{\left(a+b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{\left(b+c\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{\left(c+a\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Theo BĐT Cauchy , ta có : \(\frac{\left(a+b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{27\left(a+b\right)^2}{\left(a+b+b+c+c+a\right)^3}=\frac{27\left(a+b\right)^2}{8\left(a+b+c\right)^3}\)

Tương tự : \(\frac{\left(b+c\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{27\left(b+c\right)^2}{8\left(a+b+c\right)^3}\) ; \(\frac{\left(c+a\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{27\left(c+a\right)^2}{8\left(a+b+c\right)^3}\)

\(\Rightarrow\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{9}{8\left(a+b+c\right)^3}.3\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\right]\)

\(\ge\frac{9}{8\left(a+b+c\right)^3}.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2\) (Áp dụng BĐT Bunhiacopxki)

\(=\frac{9.4\left(a+b+c\right)^2}{8\left(a+b+c\right)^3}=\frac{9}{2\left(a+b+c\right)}\) (đpcm)


Các câu hỏi tương tự
Tùng Nguyễn
Xem chi tiết
Võ Thị Ngọc Hân
Xem chi tiết
Tín Đinh
Xem chi tiết
Thắng Nguyễn
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Giao Khánh Linh
Xem chi tiết
Kurosaki Akatsu
Xem chi tiết
Hà Lê
Xem chi tiết
Nguyễn Vũ Thảo My
Xem chi tiết