Cho a; b; c > 0 sao cho a+b+c=3. Chứng minh rằng
\(\frac{a}{b^2\left(ca+1\right)}+\frac{b}{c^2\left(ab+1\right)}+\frac{c}{a^2\left(bc+1\right)}\ge\frac{9}{\left(1+abc\right)\left(ab+bc+ca\right)}\)
Cho \(a,b,c>0\)và \(ab+bc+ca=1\). Chứng minh \(M=\frac{1-a^2}{1+a^2}+\sqrt{3}\left(a^2+b^2+c^2\right)\le\frac{1}{8}+\frac{b^2}{1+b^2}+\frac{c^2}{1+c^2}+\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
Chứng minh bất đăng thức luôn đúng với mọi a,b,c
1/a +1/b +1/c ≥ 9/a+b+c
[1] Cho hai tập A = { 1; 2; 3; 5; 8 } và B = { -1; 0; 1; 5; 9 }. Tìm A ∪ B
A. A ∪ B = { 1; 5} B. { -1; 0; 1; 2; 3; 5; 8; 9 } C. A ∪ B = { -1; 0; 2; 3; 8;9 } D. A ∪ B = { 2; 3; 8 }
[1] Cho hai tập hợp A = { 1; 5; 9; 13 ;17; 21; 25 } và B = { 0; 1; 3; 5; 10 ; 13 }. Tìm A \(\cap B\)
A. A ∩ B = { 0; 1; 3; 5; 9; 10; 13; 17; 21; 25 } B. A ∩ B = { 1; 5; 13 }
C. A ∩ B = { 9; 17; 21; 25 } D. A ∩ B = { 0; 3; 10}
Chứng minh rằng
\(a\left(\frac{a}{2}+\frac{1}{bc}\right)+b\left(\frac{b}{2}+\frac{1}{ca}\right)+c\left(\frac{c}{2}+\frac{1}{ab}\right)\ge\frac{9}{2} \)
\(với\forall a,b,c>0\)
Cho \(a,b,c>0\)thỏa mãn \(a+b+c=1\). Chứng minh \(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)\ge8\)
Bài 4. Cho tam giác ABC có AM là đường trung tuyến và D là trung điểm của AM. a) Chứng minh rằng: 2 vec DA + vec DB + vec DC = vec 0 b) Chứng minh rằng: vec BD = 1 2 vec B vec A + 1 4 vec BC . c) Gọi E là điểm trên cạnh AC sao cho AE = 1/3 * A * C Chứng minh rằng B, D, E thẳng hàng. Tính tỉ số (DB)/(DE)
2.Cho a,b,c,d là các số thực dương thỏa mãn a2 + b2 + c2 = 1. Chứng minh: \(\frac{1}{b^2+c^2}+\frac{1}{c^2+a^2}+\frac{1}{a^2+b^2}\le\frac{a^3+b^3+c^3}{2abc}+3\) 1. Cho các số dương a,b,c thỏa mãn a+b+c=1. Chứng minh \(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge1\)