Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thiều Công Thành

cho a;b;c>0 thỏa mãn a+b+c=1.Tìm Max của bt:

\(A=\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)

Thắng Nguyễn
13 tháng 12 2016 lúc 11:46

Áp dụng BĐT AM-GM ta có:

\(9a^3+\frac{1}{3}+\frac{1}{3}\ge3\sqrt[3]{9a^3\cdot\frac{1}{3}\cdot\frac{1}{3}}=3a\)

\(3b^2+\frac{1}{3}\ge2\sqrt{3b^2\cdot\frac{1}{3}}=2b\)

Do đó: \(A\le\text{∑}\frac{a}{3a+2b+c-1}=\frac{a}{2a+b}\left(a+b+c=1\right)\)

\(2A\le\text{∑}\frac{2a}{2a+b}=3-\text{∑}\frac{b}{2a+b}=3-\text{∑}\frac{b^2}{2ab+b^2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(2A\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\Leftrightarrow A\le1\)

Dấu "=" khi \(a=b=c=\frac{1}{3}\)


Các câu hỏi tương tự
Nguyễn Thiều Công Thành
Xem chi tiết
Dương Thu Ngọc
Xem chi tiết
Xem chi tiết
Xem chi tiết
Quyết Tâm Chiến Thắng
Xem chi tiết
Bùi Dương Anh Vũ
Xem chi tiết
jungkook
Xem chi tiết
Thanh Tùng DZ
Xem chi tiết
aaaaaaaa
Xem chi tiết