Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen ha giang

Cho \(a+b+c=0\) ; a, b, c \(\ne\) 0. Chứng minh đẳng thức: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\).

Nhờ các bạn

Akai Haruma
6 tháng 7 2019 lúc 23:54

Lời giải:

Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=(\frac{1}{a}+\frac{1}{b})^2-\frac{2}{ab}+\frac{1}{c^2}\)

\(=(\frac{1}{a}+\frac{1}{b})^2+2(\frac{1}{a}+\frac{1}{b})\frac{1}{c}+(\frac{1}{c})^2-2(\frac{1}{a}+\frac{1}{b})\frac{1}{c}-\frac{2}{ab}\)

\(=(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(=(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2-2.\frac{a+b+c}{abc}=(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2\) do $a+b+c=0$

\(\Rightarrow \sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\) (đpcm)


Các câu hỏi tương tự
nguyen ha giang
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
DRACULA
Xem chi tiết
tran thi mai anh
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Uchiha Itachi
Xem chi tiết
Trần Quý
Xem chi tiết
Trần Anh Thơ
Xem chi tiết