a) Xét ΔMHC và ΔMKB có
MH=MK(gt)
\(\widehat{CMH}=\widehat{BMK}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔMHC=ΔMKB(c-g-c)
b) Ta có: HM⊥AC(gt)
AB⊥AC(gt)
Do đó: HM//AB(Định lí 1 từ vuông góc tới song song)
a) Xét ΔMHC và ΔMKB có
MH=MK(gt)
\(\widehat{CMH}=\widehat{BMK}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔMHC=ΔMKB(c-g-c)
b) Ta có: HM⊥AC(gt)
AB⊥AC(gt)
Do đó: HM//AB(Định lí 1 từ vuông góc tới song song)
Cho tam giác ABC vuông tại A, trung tuyến AM. Vẽ MH vuông góc AC ( H thuộc AC ). Trên tia đối của tia MH lấy K sao cho MK = MH.
a/ Chứng minh △MHC = △MKB.
b/ Chứng minh AH = BK
c/ Gọi I là giao điểm AM và BH, D là trung điểm AB. Chứng minh ba điểm C, I, D thằng hàng
Cho tam giác ABC vuông tại A, vẽ trung tuyến AM(M thuộc BC). Tù M kẻ MH vuông góc AC, Trên tia đối MH lấy điểm K sao cho MK bằng MH.
a) Chứng minh: Tan giac MHC=Tam giác MKB
b)Chứng minh: Tam giác ABH=Tam giác KHB
c)Gọi G là giao điểm của BH và AM, I là trung điểm của AB. Chứng minh I,G,C thẳng hàng
Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM (AM thuộc BC). Từ M kẻ MH vuông góc AC. Trên tia đối của MH lấy điểm K sao cho MK = MH a) Chứng minh tam giác MHC = tam giác MKB b) Chứng minh AB vuông góc AC c) Gọi G là trung điểm của BH và AM, I là trung điểm của AB. Chứng minh I, G, C thẳng hàng
Cho ∆ABC vuông tại A có AB < AC, vẽ trung tuyến AM (M Î BC). Từ M kẻ MHAC, trên tia đối của tia MH lấy điểm K sao cho MK = MH.
a) So sánh góc B và góc C.
b) Chứng minh H là trung điểm của đoạn thẳng AC
Cho tam giác ABC vuông tại A, vẽ trung tuyến AM( M thuộc BC). Từ M kẻ MH vuông góc với AC, trên tia đối của tia MH lấy điểm K sao cho MK = MH.
a, Chứng minh tam giác MHC = tam giác MKB
b, Chứng minh AB song song với MH
c, Gọi G là giao điểm của BH và AM, I là trung điểm của AB. Chứng minh I,G,C thẳng hàng.
Cho tam giác ABC có AB =9cm,AC=12cm,BC=15cm.
a) Chứng minh tam giác ABC vuông
b) Vẽ trung tuyến AM,từ M kẻ MH vuông góc AC.Trên tia đối tia MH lấy điểm K sao cho MK=MH.Chứng minh tam giác MHC=tam giác MKB .
C) gọi g là giao điểm của bh và am gọi i là trung điểm của ab cm i,g,c thẳng hàng
Cho tam giác ABC có AB =6cm; AC=12cm; BC=15cm
a) Chứng minh tam giác ABC vuông
b) Vẽ trung tuyến AM. Từ M vẽ MH vuông góc với AC. Trên tia đối
của tia MH lấy điểm K sao cho MK=MH. C/m
tam giác MHC=tam giác MKB.
c) Gọi G là giao điểm của BH và AM. Gọi I là trung điểm của AB.
Chứng minh rằng I,G,C thẳng hàng.
Cho tam giác ABCcó AB=9cm, AC=12cm, BC=15cm.
a)Tam giác ABCcó dạng đặc biệt nào? Vì sao?
b)Vẽ trung tuyến AM của tam giác ABC. Kẻ MH vuông góc với AC. Trên tia đối tia MH lấy điểm K sao cho MK=MH. Chứng minh : tam giác MHC=MKB.
c) BH cắt AM tại G. Chứng minh G là trọng tâm của tam giác ABC.
Cho tam giác ABC có AB =9cm,AC=12cm,BC=15cm.
a) Chứng minh tam giác ABC vuông
b) Vẽ trung tuyến AM,từ M kẻ MH vuông góc AC.Trên tia đối tia MH lấy điểm K sao cho MK=MH.Chứng minh tam giác MHC=tam giác MKB
Gọi G là giao điểm của BH và AM.Chứng minh G là trọng tâm tam giác ABC