a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có
BH chung
BA=BM
=>ΔBAH=ΔBMH
=>AH=MH
mà MH<HC
nên HA<HC
b: BA=BM
HA=HM
=>BH là trung trực của AM
c: Xét ΔBMK vuông tạM và ΔBAC vuông tại A co
BM=BA
góc B chung
=>ΔBMK=ΔBAC
=>BK=BC
a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có
BH chung
BA=BM
=>ΔBAH=ΔBMH
=>AH=MH
mà MH<HC
nên HA<HC
b: BA=BM
HA=HM
=>BH là trung trực của AM
c: Xét ΔBMK vuông tạM và ΔBAC vuông tại A co
BM=BA
góc B chung
=>ΔBMK=ΔBAC
=>BK=BC
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.
a. Chứng minh: ∆BAD = ∆BED
b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE
c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC
2.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D.
a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC
b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.
c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.
3.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.
a.Chứng minh: ∆ABE = ∆MBE.
b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,
c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC
4
Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.
a) Chứng minh ∆ABM = ∆ACM
b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.
c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng
d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.
Cho tam giác ABC vuông tại A, A C B ^ = 30 ° . Tia phân giác của góc ABC cắt cạnh AC tại M. Lấy điểm K trên cạnh BC sao cho BK = BA.
a) Chứng minh ∆ A B M = ∆ K B M
b) Gọi E là giao điểm của các đường thẳng AB và KM. Chứng minh tam giác MEC cân.
c) Chứng minh tam giác BEC đều.
d) Kẻ A H ⊥ E M . ( H ∈ E M ) . Các đường thẳng AH và EC cắt nhau tại N. Chứng minh K N ⊥ A C .
Cho tam giác ABC vuông tại A có AB=3cm, AC=4cm. Gọi Điện là điểm trên cạnh BC sao cho BD=3cm. Đường thẳng vuông góc với BC tại Đây cắt cạnh AC tại M, cắt tia BA tại N.
1) Chứng minh AM=DM.
2) Chứng minh tam giác MCN cân.
3) Gọi K là giao điểm của BM và CN. Chứng minh rằng BK là đường trung trực của đoạn thẳng CN.
4) Tính độ dài đoạn thẳng BK và chứng minh rằng góc NIC=90° với I là trung điểm của BK.
Cho tam giác ABC vuông tại A và AB = 6cm, AC = 8cm. Trên cạnh BC lấy điểm M sao cho BM = AB. Qua M dựng đường thẳng vuông góc với BC cắt đường thẳng AB tại N.
a. Tính BC
b. Chứng minh tam giác ABC = tam giác MBN
c. Gọi D là giao điểm của MN và AC. Chứng minh BD là đường trung trực củaAM.
d. Chứng minh tam giác DCN cân.
cho tam giác ABC vuông tại A (AB<AC). TRên cạnh BC lấy điểm M sao cho BM=BA. Gọi E là trung điểm của AM, K là giao điểm của BE và AC.
a) Chứng minh tam giác ABE= tam giác MBE
b) Chứng minh KM vuông góc với BC
c) Qua M kẻ đường thẳng song song với AC cắt BK tại F, trên đoạn KC lấy điểm Q sao cho KQ = MF. Chứng minh tam giác ABK = tam giác QMC
cho tam giác ABC vuông tại A, góc ACB= 30 độ. Tia phân giác của góc ABC cắt cạnh AC tại M. Lấy điểm K trên cạnh BC sao cho BA=BK.
a, chứng minh tam giác ABM= tam giác KBM
b, Gọi E là giao điểm của các đường thẳng AB và KM. Chứng minh tam giác MEC cân
c, chứng minh tam giác BEC đều
d, Kẻ AH vuông góc EM( H thuộc EM). Các đường thẳng AH và EC cắt nhau tại N. Chứng minh KN vuông góc ới AC
Cho tam giác ABC vuông tại A có AB<BC. Trên cạnh BC lấy điểm D sao cho BD=BA. Gọi M là trung điểm của cạn AD
1) Chứng minh tam giác ABM=tam giác DBM
2) Vẽ tia BM cắt cạnh AC tại E . Chứng minh ED vuông góc BD
3) Chứng minh tam giác AME = tam giác DME
4) Trên cạnh MD lấy điểm I sao cho MI=ID . Qua I vẽ đường thẳng vuông góc với MD cắt cạnh ED tại K. Từ M vẽ đường thẳng vuông góc với cạnh AB tại H . Chứng minh ba điểm H,M,K thẳng hàng
cho tam giác ABC có AB=AC. Gọi M là trung điểm của cạnh BC. a)Chúng minh: tam giác ABM= tam giác ACM b)Chứng minh: AM vuông góc với BC c)Gọi I là trung điểm của đoạn thẳng AM. Qua A kẻ đường thẳng d vuông góc với A. Gọi E là giao điểm của đường thẳng của d và tia BI. Chứng minh AE=Bm d)Gọi K là trung điểm của AC. Chứng minh ba điểm M,K,E thẳng hàng