a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
b: Xét ΔAEH vuông tại E và ΔAHB vuông tại H có
góc EAH chung
Do đó: ΔAEH\(\sim\)ΔAHB
c: Xét ΔAHC vuông tại H có HF là đường cao
nên \(AH^2=AF\cdot AC\left(1\right)\)
d: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AH^2=AE\cdot AB\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
hay AE/AC=AF/AB
=>ΔAEF\(\sim\)ΔACB