Nguyễn Thảo Nhi

cho a,b,c thuộc Q thỏa mãn a + b\(\sqrt[3]{2}\)+ c\(\sqrt[3]{4}\)

chung minh a=b=c=0

Phước Nguyễn
9 tháng 8 2016 lúc 11:12

Cho  \(a,b,c\in Q\)  thỏa mãn  \(a+b\sqrt[3]{2}+c\sqrt[3]{4}=0\)   \(\left(i\right)\)

Chứng minh rằng:  \(a=b=c=0\)

\(-------\)

Chứng minh bổ đề:  \(\sqrt[3]{2}\)  là một số vô tỉ.

Đối với loại bài toán trên, ta cần dùng phương pháp phản chứng để tìm đáp án.

Thật vậy, giả sử  \(R=\sqrt[3]{2}\)  là một số hữu tỉ.

Tức là phải tồn tại các số nguyên  \(m,n\)  sao cho  \(R=\frac{m}{n}\) nên  \(R\) là nghiệm hữu  tỉ của phương trình:

\(\left(\frac{m}{n}\right)^3=2;\)

Suy ra  \(m\inƯ\left(2\right),\)   \(n\inƯ\left(1\right)\)  

Tuy nhiên, lại không tồn tại  \(m\) nào  là ước của  \(2\)  mà lũy thừa \(3\) (lập phương) bằng  \(2\) 

Do đó, suy ra điều giả sử sai!

Vậy,  \(R\)  là một số vô tỉ.

\(-------\)

Ta có:

\(\left(i\right)\)  \(\Rightarrow\)  \(c\sqrt[3]{2^2}+b\sqrt[3]{2}+a=0\)  \(\left(ii\right)\)

Đặt  \(a=z;\)  \(b=y;\)và   \(c=x\)  \(\Rightarrow\)  \(x,y,z\in Q\)

Ta biểu diễn lại phương trình   \(\left(ii\right)\)  dưới dạng ba biến số  \(x,y,z\)  như sau:

\(x\sqrt[3]{2^2}+y\sqrt[3]{2}+z=0\)  \(\left(\alpha\right)\)

Giả sử phương trình  \(\left(\alpha\right)\) tồn tại với ba ẩn  \(x,y,z\)  được xác định, ta có:

\(y\sqrt[3]{2^2}+z\sqrt[3]{2}+2x=0\)  \(\left(\beta\right)\)

Từ  \(\left(\alpha\right);\left(\beta\right)\)  suy ra được  \(\left(y^2-xz\right)\sqrt[3]{2}=\left(2x^2-yz\right)\)

Nếu  \(2x^2-yz\ne0\)  \(\Rightarrow\)  \(\sqrt[3]{2}=\frac{2x^2-yz}{y^2-xz}\)  là một số hữu tỉ. Trái với giả thiết!

\(\Rightarrow\)  \(\hept{\begin{cases}y^2-xz=0\\2x^2-yz=0\end{cases}}\)  \(\Rightarrow\)  \(\hept{\begin{cases}y^3=xyz\\yz=2x^2\end{cases}}\)

\(\Rightarrow\)  \(y^3=2x^3\)  hay nói cách khác,  \(y=x\sqrt[3]{2}\)

Nếu   \(y\ne0\)  thì  \(\sqrt[3]{2}=\frac{y}{x}\in Q\)   (mâu thuẫn với giả thiết theo bổ đề trên)

\(\Rightarrow\) \(x=0;y=0\)  

Từ đó, ta dễ dàng chứng minh được  \(z=0\)

Do đó,  \(a=0;b=0;c=0\)  (theo cách đặt trên)

Ngược lại, nếu  \(a=b=c=0\) thì vẫn thỏa mãn  \(\left(i\right)\)  luôn đúng!

Vậy,  tóm lại tất cả các điều đã nêu trên, kết luận   \(a=b=c=0\)

doan ho thanh thao
28 tháng 7 2017 lúc 15:11

khó quá bạn ơi mik ko biết

xin lỗi bạn nha


Các câu hỏi tương tự
Dung Đặng Phương
Xem chi tiết
Itachi Uchiha
Xem chi tiết
friknob
Xem chi tiết
Le Dinh Quan
Xem chi tiết
Trần Mai Ngọc
Xem chi tiết
Nguyễn Quang Hưng
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
phan tuấn anh
Xem chi tiết