Ta có : a + b + c = 0 <=> a + b = - c
Ta cũng có : a3 + a2c - abc + b2c + b3
= (a3 + b3) + c(a2 - ab + b2)
= (a + b)( a2 - ab + b2) - (a + b)(a2 - ab + b2)
= 0
Ta có : a + b + c = 0 <=> a + b = - c
Ta cũng có : a3 + a2c - abc + b2c + b3
= (a3 + b3) + c(a2 - ab + b2)
= (a + b)( a2 - ab + b2) - (a + b)(a2 - ab + b2)
= 0
Cho a, b, c > 0 thỏa mãn abc =1. CMR: \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Với a, b, c là độ dài ba cạnh của một tam giác thỏa mãn 2c+b=abc, cmr 3/(b+c-a)+4/(c+a-b)+5/(a+b-c)≥4√3
cho a,b,c là 3 số thực khác 0 thoả mãn a^3+b^3+a^2b+b^2c-abc=0 tihs giá trị biểu thức P=a+b+c
Cho a,b,c >0 thỏa mãn a.b.c=1. CMR
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
a, Cho a+b+c=0 CMR:\(a^3\)+\(a^2c-abc+b^2c+b^3=0\)
b, Cho 2(a+1)(b+1)=(a+b)(a+b+2) CMR:\(a^2+b^2=2\)
c, Cho \(a^2+c^2=2b^2\)CMR;
(a+b)(a+c)+(c+a)(c+b)=2(b+a)(b+c)
Cho a, b, c \(\ne\)0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\). Tính : \(E=\frac{a^2b^2c^2}{a^2b^2+b^2c^2-a^2c^2}+\frac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\frac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}.\)
cho \(a;b;c>0\)thỏa mãn \(\frac{a^2+b^2}{a^3+b^3+1}+\frac{b^2+c^2}{b^3+c^3+1}+\frac{c^2+a^2}{c^3+a^3+1}\le2\)CMR: \(a+b+c\ge a^2b^2+b^2c^2+c^2a^2\)
Cho a,b,c là các số thực khác 0 thỏa mãn. Tính giá trị biểu thức:
\(P=\frac{a^2c}{a^2c+c^2b+b^2a}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
Cho a , b , c là 3 số thực khác 0 , thỏa mãn : \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)