\(a^2+b^2+c^2=1\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=1+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2=1+2\left(ab+bc+ca\right)\)
\(\Rightarrow1+2\left(ab+bc+ca\right)\ge0\)
\(\Rightarrow ab+bc+ca\ge-\dfrac{1}{2}\)
Lại có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2ab+2bc+2ca\le2a^2+2b^2+2c^2\)
\(\Leftrightarrow ab+bc+ca\le a^2+b^2+c^2\)
\(\Leftrightarrow ab+bc+ca\le1\)