Cho a,b,c là các số thực thỏa mãn (4a+5b)(4b+5c)(4c+5a)=729
tìm GTLN của M=\(abc\left(a^2+bc+ca\right)\left(b^2+ca+ab\right)\left(c^2+ab+bc\right)\)
CÓ AI TRÊN OLM LÀM ĐƯỢC KO GIÚP MK VỚI
Cho a, b, c là các số thực dương thỏa mãn (4a + 5b)(4b + 5c)(4c + 5a) = 729
Tìm GTLN của \(abc\cdot\left(a^2+bc+ca\right)\left(b^2+ca+ab\right)\left(c^2+ab+bc\right)\)
Cho a,b,c là các số thực thỏa mãn (4a+5b)(4b+5c)(4c+5a)=729
tìm GTLN của M=\(abc\left(a^2+bc+ca\right)\left(b^2+ca+ab\right)\left(c^2+ab+bc\right)\)
Cho các số thực dương a,b,c thỏa mãn điều kiện a+b+c=9. Tìm giá trji lớn nhất của biểu thức
\(T=\frac{ab}{3a+4b+5c}+\frac{bc}{3b+4c+5a}+\frac{ca}{3c+4a+5b}-\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}\)
Giả sử a,b,c là các số thực dương thỏa mãn đẳng thức ab+bc+ca=1. Chứng minh rằng:
\(2abc\left(a+b+c\right)\le\frac{5}{9}+a^4b^2+b^4c^2+c^4a^2\)
Cho a,b,c là các số thực thỏa mãn a + b + c = 1. Chứng minh rằng:
\(\left(3a+4b+5c\right)^2\ge44\left(ab+bc+ca\right)\)
Cho a,b,c là các số thực dương thỏa mãn ab + bc + ca = 28
Tìm min \(A=\frac{5a+5b+2c}{\sqrt{12\left(a^2+28\right)}+\sqrt{12\left(b^2+28\right)}+\sqrt{c^2+28}}\)
a,b,c là các số thực dương thỏa mãn a+b+c=3. CMR: \(\dfrac{a\left(a+bc\right)^2}{b\left(ab+2c^2\right)}+\dfrac{b\left(b+ca\right)^2}{c\left(bc+2a^2\right)}+\dfrac{c\left(c+ab\right)^2}{a\left(ca+2b^2\right)}>=4\)
cho a;b;c là các số thực dương thỏa mãn abc=1.Tìm Min của \(P=\frac{a^2}{\left(a+1\right)\left(b+1\right)bc}+\frac{b^2}{\left(b+1\right)\left(c+1\right)ca}+\frac{c^2-a^2b-ab-a-1}{\left(c+1\right)\left(a+1\right)ab}\)