=>
=>
=>
Tương tự, ta có:
Do đó, ta có:
(ĐPCM)
=>
=>
=>
Tương tự, ta có:
Do đó, ta có:
(ĐPCM)
Cho các số dương a,b,c thỏa mãn a+b+c=1
Chứng minh bất đẳng thức; \(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)
5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3. 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b. 7. Cho a, b, c là các số dương. Chứng minh : a3 + b3 + abc ≥ ab(a + b + c) 8. Tìm liên hệ giữa các số a và b biết rằng : |a+b|>|a-b| 9. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a b) Cho a, b, c > 0 và abc = 1. Chứng minh : (a + 1)(b + 1)(c + 1) ≥ 8 10. Chứng minh các bất đẳng thức: a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge_{\frac{9}{2\left(a+b+c\right)}+\frac{\left(a-b\right)^2}{4\left(a+b+c\right)^3}}\)Cho a,b,c là các số dương . Chứng minh bất đẳng thức trên luôn đúng
Áp dụng bất đẳng thức bunhiacopxki ta có
\(\left(a+b+c\right)^2\ge\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge9\Rightarrow a+b+c\ge3\)
Áp dụng bất đẳng thức cauchy-schwarz ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Rightarrow P\ge2\left(a+b+c\right)+\frac{9}{a+b+c}=a+b+c+\frac{9}{a+b+c}+a+b+c\)
Áp dụng bất đẳng thức cosi ta có \(a+b+c+\frac{9}{a+b+c}\ge2\sqrt{\frac{\left(a+b+c\right).9}{a+b+c}}=2\sqrt{9}=6\)
Lại có \(a+b+c\ge3\) (chứng minh trên)
\(\Rightarrow P\ge6+3=9\)
Vậy giá trị nhỏ nhất của P là 9. Dấu bằng xảy ra khi a=b=c=1
CMR với bất kì các số thực dương a,b,c sao cho a+b+c=ab+bc+ac , bất đẳng thức sau đây xảy ra :
\(3+\sqrt[3]{\dfrac{a^3+1}{2}}+\sqrt[3]{\dfrac{b^3+1}{2}}+\sqrt[3]{\dfrac{c^3+1}{2}}\le2\left(a+b+c\right)\)
SỬ DỤNG BẤT ĐẲNG THỨC BUNHIACOPXKI
Cho a,b,c>0 thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{a^2+b^2+c^2}\)
MN giúp e với
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
4. Tìm liên hệ giữa các số a và b biết rằng: a b a b
5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
6. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
7. Tìm các giá trị của x sao cho:
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.
8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
Chứng minh : (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
Cho a, b, c là các số dương. Chứng minh : a3 + b3 + abc ≥ ab(a + b + c)
Mn giúp mik vs ;-;
CMR không có các số dương a,b,c nào thỏa cả 3 bất đẳng thức:
1) a + 1/b <1
2) b + 1/c <2
3) c + 1/a <3
Chứng minh bằng phương pháp phản chứng