Cho các số thực dương a, b, c thỏa mãn \(a^2+b^2+c^2=1\). CMR:
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}+\sqrt{\frac{bc+2a^2}{1+bc-a^2}}+\sqrt{\frac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ca\)
Với a,b,c là các số thực dương thỏa mãn ab+bc+ca=1. CMR
\(P=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\ge2\)
Cho a,b là các số thực dương thỏa mãn :
C/m: \(\frac{1}{a}+\frac{1}{b}-\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\ge2\sqrt{2}\)
Cho a,b là các số thực dương thỏa mãn :
C/m: \(\frac{1}{a}+\frac{1}{b}-\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\ge2\sqrt{2}\)
Câu 1: cho các số dương a,b,c. CM BĐT: \(\sqrt{\frac{a}{b+c}}\)+\(\sqrt{\frac{b}{c+a}}\)+\(\sqrt{\frac{c}{a+b}}\)>2
Câu 2: CMR \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\)\(\ge2\)với a,b dương
Cho các số thực dương a;b;c thỏa mãn\(a^2+b^2+c^2=1\).Chứng minh
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}+\sqrt{\frac{bc+2a^2}{1+bc-a^2}}+\sqrt{\frac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ca\)
Cho a, b, c là các số thực dương. CMR:
\(\frac{a}{\sqrt{ab+b^2}}+\frac{b}{\sqrt{bc+c^2}}+\frac{c}{\sqrt{ca+a^2}}\ge\frac{3}{\sqrt{2}}\)
(Archimesdes Toán 9 Vòng 1 ngày 11/09/2020)
Cho các số dương a,b,c,d. CMR:
\(\frac{a^3+b^3}{\sqrt{a^2-ab+b^2}}+\frac{b^3+c^3}{\sqrt{b^2-bc+c^2}}+\frac{c^3+d^3}{\sqrt{c^2-cd+d^2}}+\frac{d^3+a^3}{\sqrt{d^2-da+a^2}}\ge2\left(a^2+b^2+c^2+d^2\right)\)
P/s: Bài naỳ mình có một bất đẳng thức phụ rất hay, phần còn lại của mấy bạn
a) Cho các số a,b,c là các số hữu tỉ đôi một khác nhau CMR:
\(B=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\) Là bình phương của một số hữu tỷ
b) Cho các số a,b,c là các số thực dương CMR: \(\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}\ge2\left(a+b+c\right)\)
c) Tìm tất cả các số nguyên dương n sao cho \(n^4+n^3+1\)là số chính phương