Cho các số thực dương a,b,c thỏa mãn \(a+b+c=1\)
Tìm GT lớn nhất của \(P=\sqrt{a+2b+3c}+\sqrt{c+2a+3b}+\sqrt{a+2b+3c}\)
Cho a, b, c là các số thực dương bất kì. Chứng minh rằng:
\(\frac{3a+b}{\sqrt{a^2+2b^2+c^2}}+\frac{3b+c}{\sqrt{b^2+2c^2+a^2}}+\frac{3c+a}{\sqrt{c^2+2a^2+b^2}}\le6\)
Cho a, b, c là số dương thỏa mãn a + b + c = 3. Chứng minh rằng:
\(\frac{\sqrt{3a+bc}}{a+\sqrt{3a+bc}}+\frac{\sqrt{3b+ac}}{a+\sqrt{3b+ac}}+\frac{\sqrt{3c+ab}}{a+\sqrt{3c+ab}}\ge2\)
Cho 3 số thực dương a, b, c. Chứng minh rằng:
\(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\)\(\ge\frac{3}{\sqrt{5abc}}\)
Cho a,b,c>0,tim GTNN:\(\frac{\sqrt{a^3c}}{\sqrt{b^3a}+bc}+\frac{\sqrt{b^3a}}{\sqrt{c^3b}+ac}+\frac{\sqrt{c^3b}}{\sqrt{a^3c}+ab}\)
Cho a, b, c là các số dương . CMR:
\(\frac{a\left(b+2c\right)}{\sqrt{3b^2+6c^2}}+\frac{b\left(c+2a\right)}{\sqrt{3c^2+6a^2}}+\frac{c\left(a+2b\right)}{\sqrt{3a^2+6b^2}}\le a+b+c\)
1 . )
Cho 3 số a,b,c dương. Tìm giá trị lớn nhất của biểu thức
\(P=\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}\)
2
cho các số thực không âm a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Tìm giá trị nhỏ nhất của biểu thức
\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)
cho a,b,c>0 thỏa mãn a+b+c=3. tìm min A=\(\frac{\sqrt{ab+3c}+\sqrt{2a^2+2b^2}}{3+\sqrt{ab}}\)
a, a,b,c>0. CMR:\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ac}{a+c+2b}\le\dfrac{a+b+c}{4}\)
b, a,b,c>0. CMR:\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{a+b+c}{6}\)