cho pt bậc 2 : ax^2+bx+c=0 có 2 nghiệm phân biệt thỏa mãn
X1+x2-2.X1x2=0
mx1x2-(x1+x2)=2m+1
a) tìm pt bậc hai trên với m là tham số
b)xác định m để phương trình bậc 2 trên có 2 nghiệm dương phân biệt
cho a,b,c là các số dương đôi một khác nhau có tổng là 12.CMR trong ba phương trình sau có một phương trình vô nghiệm 1 phương trình có nghiệm
(1) x2+ax+b=0
(2)x2+bx+c=0
(3)x2+cx+a=0
Cho phương trình
x^2-x+m=0 ( 1) (m là tham số)
a, Giải phương trình khi m=-6
b, tìm m để pt (1) có nghiệm
c,Tìm n sao cho pt x^2-97x+n=0 (2) ( n là tham số) có các nghiệm là lũy thừa bậc 4 của các nghiệm phương trình (1)
CÂU C
HELP>>>
Chứng minh phản chứng: cho a,b,c là các số nguyên. Biết phương trình ax^2+bx+c có nghiệm hữu tỉ. chứng minh rằng trong ba số nguyên a,b,c có ít nhất 1 số chẵn
1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.
2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.
3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.
4. Chứng minh rằng : Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác.
5. Cho a, b, c dương nhỏ hơn 1. Chứng minh rằng ít nhất một trong ba bất đẳng thức sau sai
a( 1 - b) > 1/4 ; b( 1- c) > 1/4 ; c( 1 - a ) > 1/4
6. Chứng minh rằng \(\sqrt{ }\)2 là số vô tỉ
7. Cho các số a, b, c thỏa mãn các điều kiện:
{ a+ b+ c> 0 (1)
{ ab + bc + ca > 0 (2)
{ abc > 0 ( 3)
CMR : cả ba số a, b, c đều dương
8. Chứng minh bằng phản chứng định lí sau : "Nếu tam giác ABC có các đường phân giác trong BE, CF bằng nhau, thì tam giác ABC cân".
9. Cho 7 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 100. CMR luôn tìm được 3 đoạn để có thể ghép thành 1 tam giác.
Tìm tất cả các tam thức bậc hai hệ số nguyên f(x)=ax2+bx+c và g(x)=(a+1)x2+(b+1)x +(c+1) sao cho cả hai đều có nghiệm nguyên
giả sử phương trình bậc 2 : x^2 + ax + b + 1 = 0 có hai nghiệm nguyên dương. chứng minh rằng : a^2 + b^2 là 1 hợp số
Cho phương trình ax2+bx+c=0 và a,b,c là các số nguyên lẻ. Chúng minh rằng nếu phương trình đó có nghiệm thì ngiệm đó không thể là số nguyên
Cho a,b,c là các số dương đôi một khác nhau sao cho a+b+c = 12. CMR trong 3 phương trình sau có 1 phương trình có nghiệm, một phương trình vô nghiệm:
\(x^2+ax+b=0\); \(x^2+bx+c=0\); \(x^2+cx+a=0\)
cho a,b,c là 3 số dương có tổng bằng 12
chứng minh rằng trong 3 phương trình :
x^2 + ax + b =0
x^2+bx+c = 0
x^2 + cx +a =0
có một phương trình vô nghiệm , một phương trình có nghiệm