Cho a;b;c là độ dài 3 cạnh của một tam giác có chu vi là 1 :
CMR :\(4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+9\)
Giúp mk nha
Cho a;b;c là 3 cạnh của 1 tam giác có chu vi bằng 1
CMR\(\frac{2}{9}\le a^3+b^3+c^3+3abc< \frac{1}{4}\)
cho a,b,c là 3 cạnh của một tam giác
cmr: \(\left(1-\frac{b+c}{a}\right)\left(1-\frac{a+c}{b}\right)\left(1-\frac{b+a}{c}\right)\le\frac{1}{8}\)
cho a,b,c là dộ dài 3 cạnh tam giác ABC, p là nửa chu vi.
cm:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
cho a,b,c là dộ dài 3 cạnh tam giác ABC, p là nửa chu vi.
cm: \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a,b,c là các số thực dương có tổng bằng 1.CMR \(\left(a+\frac{1}{b}\right)\cdot\left(b+\frac{1}{c}\right)\cdot\left(c+\frac{1}{a}\right)\le\left(\frac{10}{3}\right)^3\)
a,b,c là độ dài 3 cạnh của 1 tam giác chu vi bằng 1 cmr
\(\frac{b+c-a}{a^2+bc}+\frac{c+a-b}{b^2+ca}+\frac{a+b-c}{c^2+ab}>4\)
Cho a;b;c là ba cạnh của 1 tam giác có chu vi bằng 1
Tìm Max của T=\(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}+\frac{a^2+b^2+c^2-1}{2abc}\)
ta có:\(ab+bc+ac=abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Áp dụng BĐT :\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)ta có:
\(\frac{1}{2a+b+c}=\frac{1}{\left(a+c\right)+\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right).\)\(\le\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\right)=\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right).\)
Tương tự ta có :\(\frac{1}{a+2b+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right);\frac{1}{a+b+2c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right).\)
Cộng ba BĐT lại ta có:
\(Q\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}.\)
Đẳng thức xảy ra khi \(a=b=c=3\).Max=\(\frac{1}{4}\)