Cho a, b, c \(\in R\), abc khác 0 Chứng minh rằng
\(\frac{a^4}{b^2+c^2}+\frac{b^4}{a^2+c^2}+\frac{c^4}{a^2+b^2}\ge\frac{a^2+b^2+c^2}{2}\)
cho a,b,c thuộc R, a2 +b2+c2=0. chứng minh rằng a+b+c-abc<4
Cho 2 đường tròn (O;R) và (O';R') tiếp xúc ngoài tại A (R>R'). Kẻ tiếp tuyến chung ngoài BC của 2 đường trong \(B\in\left(O;R\right)\);\(C\in\left(O';R'\right)\)
a) Tam giác ABC là tam giác gì? Tại sao?
b) BA cắt (O';R') tại E. Chứng minh rằng BC2=BE.CD
c) Chứng minh rằng OO' là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
Giúp mình với ạ
Cho 0 ≤a;b;c ≤2 và a-b;b-c;c-a khác 0. Chứng minh rằng: 1/(a-b)^2 + 1/(b-c)^2 +1/(c-a)^2 ≥9/4
1) Cho a, b, c nguyên thỏa mãn: \(a^2+b^2=c^2\left(1+ab\right)\). Chứng minh rằng: \(a\ge c;b\ge c\)
2) Cho a, b, c dương và \(a+b+c\ge abc\). Chứng minh rằng: \(a^2+b^2+c^2\ge abc\)
3) Cho a, b, c dương và \(a+b+c\ge abc\). Chứng minh rằng ít nhất hai bất đẳng thức trong các bất đẳng thức sau là sai:
\(\frac{2}{a}+\frac{3}{b}+\frac{6}{c}\ge6\); \(\frac{2}{b}+\frac{3}{c}+\frac{6}{a}\ge6\); \(\frac{2}{c}+\frac{3}{a}+\frac{6}{b}\ge6\)
Cho ba số \(a,b,c\) thỏa mãn điều kiện \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\) và \(a+b+c=abc\). Chứng minh rằng: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3. 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b. 7. Cho a, b, c là các số dương. Chứng minh : a3 + b3 + abc ≥ ab(a + b + c) 8. Tìm liên hệ giữa các số a và b biết rằng : |a+b|>|a-b| 9. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a b) Cho a, b, c > 0 và abc = 1. Chứng minh : (a + 1)(b + 1)(c + 1) ≥ 8 10. Chứng minh các bất đẳng thức: a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
Cho a, b, c là các số dương biết rằng abc = 8. Chứng minh rằng:
a, \(a^2+b^2+c^2\ge2\left(a+b+c\right)\)
b, \(a^3+b^3+c^3\ge2\left(a^2+b^2+c^2\right)\)
1) Cho a, b, c > 0. Chứng minh: \(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
2) Cho \(a,b,c\in R\).
a) Chứng minh: \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a+b+c+1\right)^2\)
b) Chứng minh: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{16}\left(a+b+c+1\right)^2\)
3) Cho \(a,b,c\in R\)Chứng minh: \(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)