Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đức Anh Gamer

Cho a,b,c dương. C/m \(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\ge\frac{9}{4\left(a+b+c\right)}\)

Nguyễn Ngọc Khanh (Team...
18 tháng 9 2020 lúc 16:42

Bài này áp dụng BĐT Cauchy-Schwarz: \(\left(m^2+n^2+p^2\right)\left(x^2+y^2+z^2\right)\ge\left(mx+ny+pz\right)^2\)

Xét:

\(\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2+\left(\sqrt{c}\right)^2\right].\left[\left(\frac{\sqrt{a}}{b+c}\right)^2+\left(\frac{\sqrt{b}}{c+a}\right)^2+\left(\frac{\sqrt{c}}{a+b}\right)^2\right]\ge\)

\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\)(1)

Xét: \(\left[\left(\sqrt{ab+ca}\right)^2+\left(\sqrt{bc+ab}\right)^2+\left(\sqrt{ca+bc}\right)^2\right].\left[\left(\frac{a}{\sqrt{ab+ca}}\right)^2+\left(\frac{b}{\sqrt{bc+ab}}\right)^2+\left(\frac{c}{\sqrt{ca+bc}}\right)^2\right]\ge\)

\(\left(a+b+c\right)^2\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)(2)

Xét \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3}{2}\)(3)

Từ (1), (2), (3)

 \(\Rightarrow\left(a+b+c\right)\left[\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\right]\ge\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

\(\Rightarrow\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\ge\frac{9}{4\left(a+b+c\right)}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phạm Vũ Lam Khánh
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
KCLH Kedokatoji
Xem chi tiết
tth_new
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Bá Hùng
Xem chi tiết
Bảo Ngọc
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
cherry moon
Xem chi tiết