cho a, b, c đôi một khác nhau. chứng minh: a^2/(b-c)^2+b^2/(c-a)^2+c^2/(a-b)^2>=2
Cho các số thực a, b, c đôi một khác nhau thỏa mãn a^2-b=b^2-c=c^2-a Chứng minh rằng (a+b+1)(b+c+1)(c+a+1)= -1
xét các số thực a,b,c đôi một khác nhau, chứng minh rằng:
(a/b-c)^2+(b/c-a)^2+(c/a-b)^2>=2
Cho a, b, c đôi một khác nhau thõa mãn điều kiện (a + b + c)2 = a2 + b2 + c2.
Chứng minh rằng: \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}=1\)
Choa,b,c đôi một khác nhau thỏa mãn \(a^3+b^3+c^3=3abc\)
Chứng minh :\(\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2-b^2+c^2}+\frac{1}{-a^2+b^2+c^2}=0\)
Cho a, b, c khác nhau đôi một. Chứng minh rằng: \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)
Cho a,b,c đôi một khác nhau cmr (a+b)^2÷(a-b)^2 + (b+c)^2÷(b-c)^2 + (c+a)^2÷(c-a)^2>=2
Cho a,b,c là ba số khác nhau đôi một và \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
Chứng minh rằng : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
1/Giải phương trình sau :
\(x-a^2x-\frac{b^2}{b^2-x^2}+a=\frac{x^2}{x^2-b^2}\)
2/ Cho a, b, c là các số khác 0 và đôi một khác nhau , thỏa mãn đẳng thức a + b + c = 0 . Chứng minh rằng :
\(a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2=0\)